Skip to main content
Log in

Compost is a carrier medium for Trichoderma harzianum

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

Trichoderma spp. are one of the most commercialized fungal biocontrol agents. To improve its applicability, while preserving its effectiveness against diseases, a selection of composts were tested as carrier mediums. The population dynamic of T. harzianum was studied in three composts differing in biological characteristics based on the Nematode Index of Compost Maturity (NICM). The results showed a decline in the T. harzianum population, which became stable after six or eight weeks, irrespective of compost, concentration or sterilization. The bioassay with Rhizoctonia solani on bean showed promising results for disease control after storage of the inoculated composts. Nevertheless, T. harzianum was ineffective against R. solani in one compost with a high NICM value, likely related to its sub-optimal physicochemical characteristics and lower root colonization. Compost is a suitable carrier medium for T. harzianum, but the NICM value is not a good indicator to predict the survival rate nor the disease suppression activity of compost inoculated with T. harzianum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abafita R, Shimbir T, Kebede T (2014) Effects of different rates of vermicompost as potting media on growth and yield of tomato (Solanum lycopersicum L.) and soil fertility enhancement. Sky J Soil Sci Environ Manag 3:73–77

    Google Scholar 

  • Adams PB (1990) The potential of mycoparasites for biological control of plant diseases. Annu Rev Phytopathol 28:59–72

    Article  CAS  PubMed  Google Scholar 

  • Bae YS, Knudsen GR (2005) Soil microbial biomass influence on growth and biocontrol efficacy of Trichoderma harzianum. Biol Control 32:236–242

    Article  Google Scholar 

  • Beaulieu R, López-Mondéjar R, Tittarelli F, Ros M, Pascual JA (2011) QRT-PCR quantification of the biological control agent Trichoderma harzianum in peat and compost-based growing media. Bioresour Technol 102:2793–2798

    Article  CAS  PubMed  Google Scholar 

  • Benítez T, Rincón AM, Limón MC, Codón AC (2004) Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7:249–260

    PubMed  Google Scholar 

  • Bonanomi G, Antignani V, Pane C, Scala F (2007) Suppression of soilborne fungal diseases with organic amendments. J Plant Pathol 89:311–324

    Google Scholar 

  • Bonanomi G, Antignani V, Capodilupo M, Scala F (2010) Identifying the characteristics of organic soil amendments that suppress soilborne plant diseases. Soil Biol Biochem 42:136–144

    Article  CAS  Google Scholar 

  • Bridge P, Spooner B (2001) Soil fungi diversity and detection. Plant Soil 232:147–154

    Article  CAS  Google Scholar 

  • D’aes J, Hua GKH, De Maeyer K, Pannecoucque J, Forrez I, Ongena M, Dietrich LEP, Thomashow LS, Mavrodi DV, Höfte M (2011) Biological control of Rhizoctonia root rot on bean by phenazine- and cyclic lipopeptide-producing Pseudomonas CMR12a. Phytopathology 101:996–1004

    Article  CAS  PubMed  Google Scholar 

  • D’Hose T, Ruysschaert G, Viaene N, Debode J, Vanden T, van Vaerenbergh J, Cornelis W, Willekens K, Vandecasteele B (2016) Farm compost amendment and non-inversion tillage improve soil quality without increasing the risk for N and P leaching. Agric Ecosyst Environ 225:126–139

    Article  CAS  Google Scholar 

  • De Ceuster TJJ, Hoitink HAJ (1999) Using compost to control plant diseases. BioCycle 40:61–64

    Google Scholar 

  • De Tender CA, Debode J, Vandecasteele B, D’Hose T, Cremelie P, Haegeman A, Ruttink T, Dawyndt P, Maes M (2016) Biological, physicochemical and plant health responses in lettuce and strawberry in soil or peat amended with biochar. Appl Soil Ecol 107:1–12

    Article  Google Scholar 

  • Elad Y, Hadar Y, Hadar E, Chet I, Henis Y (1981) Biological control of Rhizoctonia solani by Trichoderma harzianum in carnation. Plant Dis 65:675–677

    Article  Google Scholar 

  • Gao L, Sun MH, Liu XZ, Che YS (2007) Effects of carbon concentration and carbon to nitrogen ratio on the growth and sporulation of several biocontrol fungi. Mycol Res 111:87–92

    Article  CAS  PubMed  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes, application to the identification of mycorrihiza and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  • Grigatti M, Cavani L, Ciavatta C (2011) The evaluation of stability during the composting of different starting materials: Comparison of chemical and biological parameters. Chemosphere 83:41–48

    Article  CAS  PubMed  Google Scholar 

  • Harman GE, Howell CR, Viterbo A, Chet I, Lorito M (2004) Trichoderma species—opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56

    Article  CAS  PubMed  Google Scholar 

  • Herren GL, Binnemans I, Joos L, Viaene N, Ehlers R-U, Vandecasteele B, Bert W, Steel H (2018) Compost as a carrier medium for entomopathogenic nematodes—the influence of compost maturity on their virulence and survival. Biol Control 125:29–38

    Article  Google Scholar 

  • Hoitink HAJ, Boehm M (1999) Biocontrol within the context of soil microbial communities: a substrate-dependent phenomenon. Annu Rev Phytopathol 37:427–446

    Article  CAS  PubMed  Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous inference in general parametric models. Biometrical J 50:346–363

    Article  Google Scholar 

  • Hou Y, Zhang H, Miranda L, Lin S (2010) Serious overestimation in quantitative PCR by circular (supercoiled) plasmid standard: microalgal pcna as the model gene. PLoS ONE 5(3):e9545

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hua GKH, Bertier L, Soltaninejad S, Höfte M (2014) Cropping systems and cultural practices determine the Rhizoctonia anastomosis groups associated with Brassica spp. Vietnam PLoS ONE 9(11):e111750

    Article  CAS  PubMed  Google Scholar 

  • Kibaki J, Hau B, Waiganjo MM (2006) Growth and survival of Trichoderma harzianum as influenced by substrate compost content. In: Proceedings of the 10th KARI biennial scientific conference, pp 12–17

  • Knudsen GR, Dandurand LMC (2014) Ecological complexity and the success of fungal biological control agents. Adv Agric 2014:542703

    Google Scholar 

  • Kredics L, Chen L, Kedves O, Büchner R, Hatvani L, Allaga H, Nagy VD, Khaled JM, Alharbi NS, Vágvölgyi C (2018) Molecular tools for monitoring Trichoderma in agricultural environments. Front Microbiol 9:1599

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin CH, Chen YC, Pan TM (2011) Quantification bias caused by plasmid DNA conformation in quantitative real-time PCR assay. PLoS ONE 6(12):e29101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Litterick AM, Harrier L, Wallace P, Watson CA, Wood M (2004) The role of uncomposted materials, composts, manures, and compost extracts in reducing pest and disease incidence and severity in sustainable temperate agricultural and horticultural crop production—a review. CRC Crit Rev Plant Sci 23:453–479

    Article  Google Scholar 

  • Lopéz-Mondéjar R, Antón A, Raidl S, Ros M, Pascual JA (2010) Quantification of the biocontrol agent Trichoderma harzianum with real-time TaqMan PCR and its potential extrapolation to the hyphal biomass. Bioresour Technol 101:2888–2891

    Article  CAS  PubMed  Google Scholar 

  • Nerey Y, Pannecoucque J, Hernandez HP, Diaz M, Espinosa R, De Vos S, van Beneden S, Herrera L, Höfte M (2010) Rhizoctonia spp. causing root and hypocotyl rot in Phaseolus vulgaris in Cuba. J Phytopathol 158:236–243

    Article  CAS  Google Scholar 

  • Pertot I, Alabouvette C, Esteve EH, Soraya F (2015) Focus group soil-borne diseases—Minipaper: the use of microbial biocontrol agents against soil-borne diseases. eip-agri. https://ec.europa.eu/eip/agriculture/sites/agri-eip/files/8_eip_sbd_mp_biocontrol_final.pdf

  • Peshin R, Dhawan AK, Dhawan KA (2009) Integrated pest management: innovation-development process, 1st edn. Springer, Berlin

    Book  Google Scholar 

  • Postma J, Montanari M, van Den Boogert PHJF (2003) Microbial enrichment to enhance the disease suppressive activity of compost. Eur J Soil Biol 39:157–163

    Article  Google Scholar 

  • R Core Team (2013) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. https://www.r-project.org/

  • SAS Institute (2013) SAS 9.4 procedures guide, NC: SAS Institute Inc. 2002–2004

  • Sanchez-Monedero MA, Roig A, Paredes C, Bernal MP (2001) Nitrogen transformation during organic waste composting by the Rutgers system and its effects on pH, EC and maturity of the composting mixtures. Bioresour Technol 78:301–308

    Article  CAS  PubMed  Google Scholar 

  • Schena L, Ippolito A (2003) Rapid and sensitive detection of Rosellinia necatrix in roots and soils by real time Scorpion-PCR. J Plant Pathol 85:15–25

    CAS  Google Scholar 

  • Steel H, Moens T, Vandecasteele B, Hendrickx F, De Neve S, Neher DA, Bert W (2018) Factors influencing the nematode community during composting and nematode-based criteria for compost maturity. Ecol Indic 85:409–421

    Article  Google Scholar 

  • Termorshuizen AJ, Moolenaar SW, Veeken AHM, Blok WJ (2004) The value of compost. Rev Environ Sci Bio/Technol 3:343–347

    Article  CAS  Google Scholar 

  • Tilston EL, Pitt D, Groenhof AC (2002) Composted recycled organic matter suppresses soil-borne diseases of field crops. New Phytol 154:731–740

    Article  CAS  PubMed  Google Scholar 

  • van Soest PJ, Robertson JB, Lewis BA (1991) Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci 74:3583–3597

    Article  PubMed  Google Scholar 

  • Vandecasteele B, Boogaerts C, Vandaele E (2016) Combining woody biomass for combustion with green waste composting: effect of removal of woody biomass on compost quality. Waste Manag 58:169–180

    Article  CAS  PubMed  Google Scholar 

  • Vandecasteele B, Debode J, Willekens K, van Delm T (2018) Recycling of P and K in circular horticulture through compost application in sustainable growing media for fertigated strawberry cultivation. Eur J Agron 96:131–145

    Article  CAS  Google Scholar 

  • Verma M, Brar SK, Tyagi RDD, Surampalli RYY, Valéro JRR (2007) Antagonistic fungi, Trichoderma spp.: Panoply of biological control. Biochem Eng J 37:1–20

    Article  Google Scholar 

  • Whelan JA, Russell NB, Whelan MA (2003) A method for the absolute quantification of cDNA using real-time PCR. J Immunol Methods 278:261–269

    Article  CAS  PubMed  Google Scholar 

  • White TJ, Bruns S, Lee S, Taylor J, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfland DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • Williams J, Clarkson JM, Mills PR, Cooper RM (2003a) A selective medium for quantitative reisolation of Trichoderma harzianum from Agaricus bisporus compost. Appl Environ Microbiol 69:4190–4192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams J, Clarkson JM, Mills PR, Cooper RM (2003b) Saprotrophic and mycoparasitic components of aggressiveness of Trichoderma harzianum groups toward the commercial mushroom Agaricus bisporus. Appl Environ Microbiol 69:4192–4199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Hanne Steel acknowledges the special research fund UGent for her post-doc grant. Gisèle L. Herren acknowledges FWO (the Research Foundation – Flanders; 11W0918N) for a PhD Grant. We thank Alexandre Meire of PUR VER for the vermicompost and Paul Quataert of the Research Institute of Agriculture, Fisheries and Food (ILVO) for his excellent statistical input.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lisa Joos or Gisèle L. Herren.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Fouad Daayf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joos, L., Herren, G.L., Couvreur, M. et al. Compost is a carrier medium for Trichoderma harzianum. BioControl 65, 737–749 (2020). https://doi.org/10.1007/s10526-020-10040-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-020-10040-z

Keywords

Navigation