Skip to main content

Effects of marigold on the behavior, survival and nutrient reserves of Aphidius Platensis

Abstract

Marigolds (Tagetes erecta L.) suppress nematodes and are attractive companion plants, but their role in biological control is unknown. We evaluated how exposure to marigold blooms impacts the aphid parasitoid, Aphidius platensis Brethes. Female wasps previously exposed to marigold spent more time walking and parasitizing Myzus percisae Sulzer or Schizaphis graminum Rodani aphids, and subsequently had higher parasitism rates. Meanwhile, completely starved wasps spent more time stationary and marginally more time grooming. Time spent probing, emergence rate, and sex ratio were not affected. Wasp survival was best on honey, followed by marigold, and lowest on non-blooming marigolds. Nutrient reserves of wasps given honey, aphid-infested marigold, or marigold alone were compared to newly-emerged unfed wasps. Their resulting lipid, glycogen and sugar levels were similar, suggesting that these foods helped wasps maintain reserves similar to emergence levels. These results suggest that marigold may improve biological control of aphids by A. platensis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Aduba OL, Olson DM, Ruberson JR, Hartel PG, Potter TL (2013) Flowering plant effects on adults of the stink bug parasitoid Aridelus rufotestaceus (Hymenoptera: braconidae). Biol Control 67:344–349

    Article  Google Scholar 

  • Akaike H (1974) A new look at the statisitical model identification. IEEE Trans Auto Control AC 19:716–723

    Article  Google Scholar 

  • Alavarez-Suarez JM, Tulipani S, Romandini S, Bertoli E, Battino M (2009) Contribution of honey in nutrition and human health: a review. Med J Nutr Metab 3:15–23

    Article  Google Scholar 

  • Araj S-E, Wratten SD (2015) Comparing existing weeds and commonly used insectary plants as floral resources for a parasitoid. Biol Control 81:15–20

    Article  Google Scholar 

  • Arrese EL, Soulages JL (2010) Insect fat body: energy, metabolism, and regulation. Annu Rev Entomol 55:207–225

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baker HG, Baker I (1983) A brief historical review of the chemistry of floral nectar. In: Bentley B, Elias T (eds) The biology of nectaries, 1st edn. Columbia University Press, New York, pp 126–152

    Google Scholar 

  • Balmer O, Géneau CE, Belz E, Weishaupt B, Förderer G, Moos S, Ditner N, Juric I, Luka H (2014) Wildflower companion plants increase pest parasitation and yield in cabbage fields: experimental demonstration and call for caution. Biol Control 76:19–27

    Article  Google Scholar 

  • Balzan MV, Wäckers FL (2013) Flowers to selectively enhance the fitness of a host-feeding parasitoid: adult feeding by Tuta absoluta and its parasitoid Necremnus artynes. Biol Control 67:21–31

    Article  Google Scholar 

  • Berndt LA, Wratten SD (2005) Effects of alyssum flowers on the longevity, fecundity, and sex ratio of the leafroller parasitoid Dolichogenidea tasmanica. Biol Control 32:65–69

    Article  Google Scholar 

  • Bianchi FJJA, Wäckers FL (2008) Effects of flower attractiveness and nectar availability in field margins on biological control by parasitoids. Biol Control 46:400–408

    Article  Google Scholar 

  • Bueno VHP (2005) Controle biológico de pulgões ou afídeos-praga em cultivos protegidos. Inf Agropec 26:9–17

    Google Scholar 

  • Capinera JL (2001) Green peach aphid, Myzus persicae (Sulzer) (Insecta: Hemiptera: Aphididae). In: Institute of Food and Agricultural Sciences, University of Florida. http://edis.ifas.ufl.edu/pdffiles/IN/IN37900.pdf

  • Charles JJ, Paine TD (2016) Fitness effects of food resources on the polyphagous aphid parasitoid, Aphidius colemani Viereck (Hymenoptera: braconidae: Aphidiinae). PLoS ONE 11(1):e0147551

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Davies AP, Ceballo FA, Walter GH (2004) Is the potential of Coccidoxenoides perminutus, a mealybug parasitoid, limited by climatic or nutritional factors? Biol Control 31:181–188

    Article  Google Scholar 

  • Daza-Bustamante P, Fuentes-Contreras E, Niemeyer HM (2003) Acceptance and suitability of Acyrthosiphon pisum and Sitobion avenae as hosts of the aphid parasitoid Aphidius ervi (Hymenoptera: braconidae). Eur J Entomol 101:49–53

    Article  Google Scholar 

  • Dyer LE, Landis DA (1996) Effects of habitat, temperature, and sugar availability on longevity of Eriborus terebrans (Hymenoptera: ichneumonidae). Environ Entomol 25:1192–1201

    Article  Google Scholar 

  • Eijs IEM, Ellers J, van Duinen GJ (1998) Feeding strategies in drosophilid parasitoids: the impact of natural food resources on energy reserves in females. Ecol Entomol 23:133–138

    Article  Google Scholar 

  • Ellis JA, Walter AD, Tooker JF, Ginzel MD, Reagel PF, Lacey ES, Bennett AB, Grossman EM, Hanks LM (2005) Conservation biological control in urban landscapes: manipulating parasitoids of bagworm (Lepidoptera: Psychidae) with flowering forbs. Biol Control 34:99–107

    Article  Google Scholar 

  • Fadamiro HY, Chen L, Onagvola EO, Graham LF (2005) Lifespan and patterns of accumulation and mobilization of nutrients in the sugar-fed phorid fly, Pseudacteon tricuspis. Physiol Entomol 30:212–224

    Article  CAS  Google Scholar 

  • Géneau CE, Wäckers FL, Luka H, Balmer O (2013) Effects of extrafloral and floral nectar of Centaurea cyanus on the parasitoid wasp Microplitis mediator: olfactory attractiveness and parasitization rates. Biol Control 66:16–20

    Article  Google Scholar 

  • Giordanengo P, Brunissen L, Rusterucci C, Vincent C, Van Bel A, Dinant S, Girousse C, Faucher M, Bonnemain JL (2010) Compatible plant-aphid interactions: how aphids manipulate plant responses. C R Biol 333:516–523

    Article  PubMed  Google Scholar 

  • Hahn DA, Denlinger DL (2007) Meeting the energetic demands of insect diapause: nutrient storage and utilization. J Insect Physiol 53:760–773

    Article  PubMed  CAS  Google Scholar 

  • Harvey JA, Cloutier J, Visser B, Ellers J, Wäckers FL, Gols R (2012) The effect of different dietary sugars and honey on longevity and fecundity in two hyperparasitoid wasps. J Insect Physiol 58:816–823

    Article  PubMed  CAS  Google Scholar 

  • Heimpel GE, Jervis MA (2005) Does floral nectar improve biological control by parasitoids? In: Wäckers FL, van Rijn PCJ, Bruin J (eds) Plant-provided food for carnivorous insects: a protective mutualism and its applications. Cambridge University Press, Cambridge, pp 267–304

    Chapter  Google Scholar 

  • Idris AB, Grafius E (1995) Wildflowers as nectar sources for Diadegma insulare (Hymenoptera: Ichneumonidae), a parasitoid of diamondback moth (Lepidoptera: Yponomeutidae). Environ Entomol 24:1726–1735

    Article  Google Scholar 

  • Irvin NA, Hoddle MS (2007) Evaluation of floral resources for enhancement of fitness of Gonatocerus ashmeadi, an egg parasitoid of the glassy-winged sharpshooter, Homalodisca vitripennis. Biol Control 40:80–88

    Article  Google Scholar 

  • Irvin NA, Hoddle MS, Castle SJ (2007) The effect of resource provisioning and sugar composition of foods on longevity of three Gonatocerus spp., egg parasitoids of Homalodisca vitripennis. Biol Control 40:69–79

    Article  Google Scholar 

  • Jacob HS, Evans EW (2001) Influence of food deprivation on foraging decisions of the parasitoid Bathyplectes curculionis (Hymenoptera: Ichneumonidae). Ann Entomol Soc Am 94:605–611

    Article  Google Scholar 

  • Jacob HS, Joder A, Batchelor KL (2006) Biology of Stethynium sp (Hymenoptera: Mymaridae), a native parasitoid of an introduced weed biological control agent. Environ Entomol 35:630–636

    Article  Google Scholar 

  • Jervis MA, Lee JC, Heimpel GE (2004) Use of behavioural and life-history studies to understand the effects of habitat manipulation. In: Gurr GM, Wratten S, Altieri M (eds) Ecological engineering for pest management: advances in habitat manipulation for arthropods. CSIRO Publishing, Collingwood, pp 65–100

    Google Scholar 

  • Krugner R, Daane KM, Lawson AB, Yokota GY (2005) Biology of Macrocentrus iridescens (Hymenoptera: Braconidae): a parasitoid of the obliquebanded leafroller (Lepidoptera: Tortricidae). Environ Entomol 34:336–343

    Article  Google Scholar 

  • Landis DA, Wratten SD, Gurr GM (2000) Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu Rev Entomol 45:175–201

    Article  PubMed  CAS  Google Scholar 

  • Leatemia JA, Laing JE, Corrigan JE (1995) Effects of adult nutrition on longevity, fecundity, and offspring sex ratio of Trichogramma minutum Riley (Hymenoptera: Trichogrammatidae). Can Entomol 127:245–254

    Article  Google Scholar 

  • Lee JC, Heimpel GE (2007) Sugar feeding may reduce short-term activity of a parasitoid wasp. Physiol Entomol 32:99–103

    Article  CAS  Google Scholar 

  • Lee JC, Heimpel GE (2008a) Effect of floral nectar, water, and feeding frequencey on Cotesia glomerata longevity. BioControl 53:289–294

    Article  Google Scholar 

  • Lee JC, Heimpel GE (2008b) Floral resources impact longevity and oviposition rate of a parasitoid in the field. J Anim Ecol 77:565–572

    Article  PubMed  Google Scholar 

  • Lee JC, Heimpel GE, Leibee GL (2004) Comparing floral nectar and aphid honeydew diets on the longevity and nutrient levels of a parasitoid wasp. Entomol Exp Appl 111:189–199

    Article  Google Scholar 

  • Lewis WJ, Stapel JO, Cortesero AM, Takasu K (1998) Understanding how parasitoids balance food and host needs: importance to biological control. Biol Control 11:175–183

    Article  Google Scholar 

  • Lightle D, Ambrosino M, Lee JC (2010) Sugar in moderation: sugar diets affect short-term parasitoid behaviour. Physiol Entomol 35:179–185

    Article  CAS  Google Scholar 

  • Michels GJ (1986) Graminaceous North American host plants of the greenbug with notes on biotypes. Southwest Entomol 11:55–66

    Google Scholar 

  • Mitsunaga T, Shimoda T, Yano E (2004) Influence of food supply on longevity and parasitization ability of a larval endoparasitoid, Cotesia plutellae (Hymenoptera: Braconidae). Appl Entomol Zool 39:691–697

    Article  Google Scholar 

  • Nafziger TD, Fadamiro HY (2011) Suitability of some farmscaping plants as nectar sources for the parasitoid wasp, Microplitis croceipes (Hymenoptera: Braconidae): effects on longevity and body nutrients. Biol Control 56:225–229

    Article  Google Scholar 

  • Namrata P, Mittal PK, Singh OP, Sagar DV, Padma V (2000) Larvicidal action of essential oils from plants against the vector mosquitoes Anopheles stephensi (Liston), Culex quinquefasciatus (Say) and Aedes aegypti (L.). Int Pest Control 42:53–55

    Google Scholar 

  • Nascimento AR, Almeida-Neto M, Almeida AM, Fonseca CR, Lewinsohn TM, Penteado-Dias AM (2014) Parasitoid wasps in flower heads of Asteraceae in the Brazilian Cerrado: taxonomical composition and determinants of diversity. Neotrop Entomol 43:298–306

    Article  PubMed  CAS  Google Scholar 

  • Nicolson SW, Thornburg RW (2007) Nectar chemistry. In: Nicolson SW, Nepi M, Pacini E (eds) Nectaries and nectar. Springer, The Netherlands, pp 215–264

    Chapter  Google Scholar 

  • Nuessly GS, Nagata RT (2005) Greenbug, Schizaphis graminum (Rondani) (Insecta: Hemiptera: Aphididae). In: Institute of Food and Agricultural Sciences, University of Florida. http://edis.ifas.ufl.edu/pdffiles/IN/IN63400.pdf

  • Olson DM, Fadamiro H, Lundgren JG, Heimpel GE (2000) Effects of sugar feeding on carbohydrate and lipid metabolism in a parasitoid wasp. Physiol Entomol 25:17–26

    Article  CAS  Google Scholar 

  • Ottoni EB (2016) The etholog homepage release 2.25. http://www.ip.usp.br/docentes/ebottoni/EthoLog/ethohome.html

  • Pan MZ, Liu TX (2014) Suitability of three aphid species for Aphidius gifuensis (Hymenoptera: Braconidae): parasitoid performance varies with hosts of origin. Biol Control 69:90–96

    Article  Google Scholar 

  • Rahat S, Gurr GM, Wratten S, Mo J, Neeson R (2005) Effect of plant nectars on adult longevity of the stinkbug parasitoid, Trissolcus basalis. Int J Pest Manage 51:323–326

    Article  Google Scholar 

  • Ribeiro AC, Guimarães PTG, Alvarez VH (1999) Recomendação para o uso de corretivos e fertilizantes em Minas Gerais 5a aproximação. UFV, Viçosa

    Google Scholar 

  • Rivero A, Casas J (1999) Incorporating physiology into parasitoid behavioral ecology: the allocation of nutritional resource. Res Popul Ecol 41:39–45

    Article  Google Scholar 

  • Russell M (2015) A meta-analysis of physiological and behavioral responses of parasitoid wasps to flowers of individual plant species. Biol Control 82:96–103

    Article  Google Scholar 

  • Salinas-Sánchez DO, Aldana-Llanos L, Valdés-Estrada ME, Gutiérrez-Ochoa M, Valladares-Cisneros G, Rodríguez-Flores E (2012) Insecticidal activity of Tagetes erecta extracts on Spodoptera frugiperda (Lepidoptera: Noctuidae). Fla Entomol 95:428–432

    Article  Google Scholar 

  • Sampaio MV, Bueno VH, van Lenteren JC (2001) Host preference of Aphidius colemani Viereck (Hymenoptera: Aphidiidae) for Myzus persicae (Sulzer) and Aphis gossypii Glover (Hemiptera: Aphididae). Neotrop Entomol 30:655–660

    Article  Google Scholar 

  • Sampaio MV, Bueno VHP, De Conti BF (2008) The effect of the quality and size of host aphid species on the biological characteristics of Aphidius colemani (Hymenoptera: Braconidae: Aphidiinae). Eur J Entomol 105:489–494

    Article  Google Scholar 

  • SAS Institute Inc. (2010) SAS 9.3. Cary, NC, USA

  • Segoli M, Rosenheim JA (2013) Spatial and temporal variation in sugar availability for insect parasitoids in agricultural fields and consequences for reproductive success. Biol Control 67:163–169

    Article  Google Scholar 

  • Siekmann G, Keller MA, Tenhumberg B (2004) The sweet tooth of adult parasitoid Cotesia rubecula: ignoring hosts for nectar? J Insect Behav 17:459–476

    Article  Google Scholar 

  • Silveira LCP, Berti-Filho E, Pierre LSR, Peres SC, Louzada JL (2009) Marigold (Tagetes erecta L.) as an attractive crop to natural enemies in onion fields. Sci Agric 66:780–787

    Article  Google Scholar 

  • Singh G, Singh OP, De Lampasona MP, Catalan CA (2003) Studies on essential oils. Part 35: chemical and biocidal investigations on Tagetes erecta leaf volatile oil. Flavour Frag J 18:62–65

    Article  CAS  Google Scholar 

  • Starý P (1975) Aphidius colemani Viereck: its taxonomy, distribution and host hange (Hymenoptera, Aphidiidae). Acta Entomol Bohemoslov 72:156–163

    Google Scholar 

  • Takasu K, Lewis WJ (1993) Host-foraging and food-foraging of the parasitoid Microplitis croceipes: learning and physiological state effects. Biol Control 3:70–74

    Article  Google Scholar 

  • Tomanović Ž, Petrović A, Mitrović M, Kavallieratos NG, Starý P, Rakhshani E, Rakhshanipour M, Popović A, Shukshuk AH, Ivanović A (2014) Molecular and morphological variability within the Aphidius colemani group with redescription of Aphidius platensis Brethes (Hymenoptera: Braconidae: Aphidiinae). B Entomol Res 104:552–565

    Article  Google Scholar 

  • Tooker JF, Hanks LM (2000) Flowering plant hosts of adult hymenopteran parasitoids of central Illinois. Ann Entomol Soc Am 93:580–588

    Article  Google Scholar 

  • Tylianakis JM, Didham RK, Wratten SD (2004) Improved fitness of aphid parasitoids receiving resource subsidies. Ecology 85:658–666

    Article  Google Scholar 

  • van Handel E (1985a) Rapid determination of glycogen and sugars in mosquitoes. J Am Mosq Control Assoc 1:299–301

    PubMed  Google Scholar 

  • van Handel E (1985b) Rapid determination of total lipids in mosquitoes. J Am Mosq Control Assoc 1:302–304

    PubMed  Google Scholar 

  • Wäckers FL (1994) The effect of food deprivation on the innate visual and olfactory preferences in the parasitoid Cotesia rubecula. J Insect Physiol 40:641–649

    Article  Google Scholar 

  • Wäckers FL, van Rijn PCJ, Heimpel GE (2008) Honeydew as a food source for natural enemies: making the best of a bad meal? Biol Control 45:176–184

    Article  Google Scholar 

  • Wanner H, Gu H, Dorn S (2006) Nutritional value of floral nectar sources for flight in the parasitoid, Cotesia glomerata. Physiol Entomol 31:127–133

    Article  Google Scholar 

  • Zhang YB, Liu WX, Wang W, Wan FH, Li Q (2011) Lifetime gains and patterns of accumulation and mobilization of nutrients in females of the synovigenic parasitoid, Diglyphus isaea Walker (Hymenoptera: Eulophidae), as a function of diet. J Insect Physiol 57:1045–1052

    Article  PubMed  CAS  Google Scholar 

  • Zhu P, Wang G, Zheng X, Tian J, Lu Z, Heong KL, Xu H, Chen G, Yang Y, Gurr GM (2015) Selective enhancement of parasitoids of rice Lepidoptera pests by sesame (Sesamum indicum) flowers. BioControl 60:157–167

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all people that work on DEN, UFLA especially to the Biological control and Conservation biological control laboratories. We thank the USDA-ARS Horticultural Crops Research Unit for facilitating a visit to perform part of the experiments, and J. Wong for comments, Hanna McIntosh and Katerina Velasco-Graham for reviewing the manuscript. This work was supported by CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) funding, travel by the Universidade Federal de Lavras Sandwich program, and nutrient assays by base funds USDA CRIS 2072-22000-040-00D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana Lemos Souza.

Additional information

Handling Editor: Stefano Colazza.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 37 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Souza, I.L., Marucci, R.C., Silveira, L.C.P. et al. Effects of marigold on the behavior, survival and nutrient reserves of Aphidius Platensis. BioControl 63, 543–553 (2018). https://doi.org/10.1007/s10526-018-9882-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-018-9882-8

Keywords

  • Biological Control
  • Flower
  • Nectar
  • Parasitoid
  • Parasitism