Skip to main content

Improving biocontrol of black vine weevil (Otiorhynchus sulcatus) with entomopathogenic fungi in growing media by incorporating spent mushroom compost

Abstract

Amending a peat-based growing medium with 10% v/v spent mushroom compost, a source of fungal chitin and other nutrients, prolonged the persistence of entomopathogenic fungi (Metarhizium brunneum Petsch and Beauveria bassiana (Balsamo) Vuillemin; Hypocreales: Clavicipitaceae). This resulted in improved efficacy of M. brunneum against black vine weevil, Otiorhynchus sulcatus F. (Coleoptera: Curculionidae) larvae compared with using inoculum without spent mushroom compost. B. bassiana only controlled larvae when used in combination with spent mushroom compost (75 ± 7% reduction in live larvae). Mixing entomopathogenic fungal inoculum with spent mushroom compost and growing medium was as effective in controlling black vine weevil larvae as using spent mushroom compost colonised with M. brunneum or B. bassiana in the growing medium (80 ± 12% reduction in live larvae). The former method is preferable since it does not require production and storage of colonised spent mushroom compost, or registration of new substrate formulations of M. brunneum or B. bassiana.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Anonymous (2014) FAO statistics. Mushrooms and truffles. Rome: Food and Agriculture Organization of the United Nations. http://www.fao.org/faostat/en/#search/mushrooms%20and%20truffels. Accessed 1 May 2017

  • Anonymous (2016) Met52® bioinsecticide for your Integrated Pest Management (IPM) program. http://www.monsantobioag.com/global/emea/Products/Documents/5Met52/Met52_flyer_EN1015.pdf. Accessed 1 May 2017

  • Ansari MA, Shah FA, Whittaker M, Prasad M, Butt TM (2007) Control of western flower thrips (Frankliniella occidentalis) pupae with Metarhizium anisopliae in peat and peat alternative growing media. BioControl 40:293–297

    Google Scholar 

  • Bruck DJ (2005) Ecology of Metarhizium anisopliae in soilless potting media and the rhizosphere: implications for pest management. BioControl 32:155–163

    Google Scholar 

  • Bruck DJ, Donohue KM (2007) Persistence of Metarhizium anisopliae incorporated in soilless potting media for control of the black vine weevil Otiorhynchus sulcatus in container-grown ornamentals. J Invertebr Path 95:146–150

    Article  Google Scholar 

  • Chong C, Cline RA, Rinker DL (1991) Growth and mineral nutrient status of containerized woody species in media amended with spent mushroom compost. J Am Soc Hort Sci 116:242–247

    CAS  Google Scholar 

  • Coventry E, Noble R, Mead A, Marin FR, Perez JA, Whipps JM (2006) Allium white rot suppression with composts and Trichoderma viride in relation to sclerotia viability. Phytopathology 96:1009–1020

    Article  PubMed  CAS  Google Scholar 

  • Cross JV, Burgess CM (1986) Localised insecticide treatment for the control of vine weevil larvae (Otiorhynchus sulcatus) on field-grown strawberry. Crop Prot 6:565–574

    Google Scholar 

  • Domsch KH, Gams W, Anderson TH (1980) Compendium of soil fungi, vol 1. Academic Press, London

    Google Scholar 

  • Dorta B, Bosch A, Arcas JA, Ertola RJ (1990) High level of sporulation of Metarhizium anisopliae in a medium containing by-products. App Microbiol Biotechnol 33:712–715

    Article  CAS  Google Scholar 

  • Fitzgerald JD, Noble R (2013) Improving the biocontrol potential of entomopathogenic fungi for soil dwelling arthropod pests. Final Report Defra Project PS2138. http://randd.defra.gov.uk/Default.aspx?Menu=Menu&Module=More&Location=None&Completed=2&ProjectID=18587. Accessed 1 May 2017

  • Gerrits JPG (1988) Nutrition and compost. In: van Griensven LJLD (ed) The cultivation of mushrooms. Darlington Mushroom Laboratories Ltd, Sussex, pp 29–72

    Google Scholar 

  • Gupta VP, Sharma DD, Mahadevawamy H, Chandrashekar DS (2009) Trichoderma pseudokoningii for hastening the decomposition of various sericultural wastes and impact of enriched composts on disease suppression in mulberry (Morus spp.). Arch Phytopathol Plant Prot 42:603–609

    Article  CAS  Google Scholar 

  • Hu G, St Leger RJ (2002) Field studies using a recombinant mycoinsecticide (Metarhizium anisopliae) reveal that it is rhizosphere competent. App Environ Microbiol 68:6383–6387

    Article  CAS  Google Scholar 

  • Kassa A, Brownbridge M, Parker BL, Skinner M, Gouli V, Gouli S, Guo M, Lee F, Hata T (2008) Whey for mass production of Beauveria bassiana and Metarhizium anisopliae. Mycol Res 112:583–591

    Article  PubMed  Google Scholar 

  • Klingen I, Westrum K, Meyling NV (2015) Effect of Norwegian entomopathogenic fungal isolates against Otiorhynchus sulcatus larvae at low temperatures and persistence in strawberry rhizospheres. BioControl 81:1–7

    Google Scholar 

  • Lopez-Llorca LV, Carbonell T, Salinas J (1999) Colonization of plant waste substrates by entomopathogenic and mycoparasitic fungi—a SEM study. Micron 33:325–333

    Article  Google Scholar 

  • Lopez-Mondejar R, Blaya J, Obiol M, Ros M, Pascual JA (2012) Evaluation of the effect of chitin-rich residues on the chitinolytic activity of Trichoderma harzianum: In vitro and greenhouse nursery experiments. Pestic Biochem Physiol 103:1–8

    Article  CAS  Google Scholar 

  • Matsumoto Y, Saucedo-Castaneda G, Revah S, Shirai K (2004) Production of β-N-acetylhexosaminidase of Verticillium lecanii by solid state and submerged fermentations utilizing shrimp waste silage as substrate and inducer. Process Biochem 39:665–671

    Article  CAS  Google Scholar 

  • Mishra S, Malik A (2012) Comparative evaluation of five Beauveria isolates for housefly (Musca domestica L.) control and growth optimization of selected strain. Parasitol Res 111:1937–1945

    Article  PubMed  Google Scholar 

  • Mohan KS, Pillai GB (1982) A method for laboratory-scale mass cultivation of Metarhizium anisopliae. Folia Microbiol 27:281–283

    Article  CAS  Google Scholar 

  • Nitschke J, Altenbach H-J, Malolepszy T, Mölleken H (2011) A new method for the quantification of chitin and chitosan in edible mushrooms. Carbohydr Res 346:1307–1310

    Article  PubMed  CAS  Google Scholar 

  • Palma-Guerrero J, Jansson H-B, Salinas J, Lopez-Llorca LV (2007) Effect of chitosan on hyphal growth and spore germination of plant pathogenic and biocontrol fungi. J App Microbiol 104:541–553

    Google Scholar 

  • Parker BL, Skinner M, Gouli SY, Gouli VV, Tobi D, Kim JS (2015) Persistence of Beauveria bassiana sensu lato and Metarhizium anisopliae sensu lato in Vermont (USA) forest soil. Biocontrol Sci Technol 25:768–788

    Article  Google Scholar 

  • Pilz C, Enkerli J, Wegensteiner R, Keller S (2011) Establishment and persistence of the entomopathogenic fungus Metarhizium anisopliae in maize fields. J App Entomol 135:393–403

    Article  Google Scholar 

  • Roberts DW, St Leger RJ (2004) Metarhizium spp., cosmopolitan insect-pathogenic fungi: mycological aspects. Adv App Microbiol 54:1–70

    Article  CAS  Google Scholar 

  • Rodrigues Marcondes N, Ledesma Taira C, Cirena Vandresen D, Estivalet Svidzinski TI, Kadowaki MK, Peralta RM (2008) New feather-degrading filamentous fungi. Microb Ecol 56:13–17

    Article  PubMed  Google Scholar 

  • Rustiguel CB, Jorge JA, Guimaraes LHS (2012) Optimisation of the chitinase production of different Metarhizium anisopliae strains under solid state fermentation with silkworm chrysalis as substrate using CCRD. Adv Microbiol 2:268–276

    Article  CAS  Google Scholar 

  • Sabbour MM (2006) Effect of some fertilizers mixed with bioinsecticides on the potato tuber moth Phthorimaea operculella infesting potato in the field and store. Pak J Biol Sci 9:1929–1934

    Article  Google Scholar 

  • Sahayaraj K, Namasivayam SKR (2008) Mass production of entomopathogenic fungi using agricultural products and by products. Afr J Biotechnol 7:1907–1910

    Article  Google Scholar 

  • Santa HSD, Santa ORD, Brand D, Vandenberghe LPDS, Soccol CR (2005) Spore production of Beauveria bassiana from agro-industrial residues. Braz Arch Biol Technol 48:51–60

    Article  Google Scholar 

  • Soundarapandian P, Chandra R (2007) Mass production of entomopathogenic fungus Metarhizium anisopliae (Deuteromycota; Hyphomycetes) in the laboratory. Res J Microbiol 2:690–695

    Article  Google Scholar 

  • St Leger RJ, Cooper RM, Charnley AK (1986) Cuticle-degrading enzymes of entomopathogenic fungi: regulation of production of chitinolytic enzyme. J Gen Microbiol 132:1509–1517

    CAS  Google Scholar 

  • Stofella PJ, Kahn BA (2001) Compost utilization in horticultural cropping systems. CRC Press LLC, Boca Raton

    Book  Google Scholar 

  • Suresh PV, Chandrasekaran M (1998) Utilization of prawn waste for chitinase production by the marine fungus Beauveria bassiana by solid state fermentation. World J Microbiol Biotechnol 14:655–660

    Article  CAS  Google Scholar 

  • Trillas MI, Casanova E, Cotxarrera L, Ordovás J, Borrero C, Avilés B (2006) Composts from agricultural waste and the Trichoderma asperellum strain T-34 suppress Rhizoctonia solani in cucumber seedlings. BioControl 39:32–38

    Google Scholar 

  • Visscher H (1988) Casing soil. In: van Griensven LJLD (ed) The cultivation of mushrooms. Darlington Mushroom Laboratories Ltd, Sussex, pp 73–88

    Google Scholar 

  • Ypsilos IK, Magan N (2005) Characterisation of optimum cultural environmental conditions for the production of high numbers of Metarhizium anisopliae blastospores with enhanced ecological fitness. Biocontrol Sci Technol 15:683–699

    Article  Google Scholar 

Download references

Acknowledgement

This work was partly funded by the Department for Environment, Food and Rural Affairs through Project PS2138.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralph Noble.

Additional information

Handling Editor: Nicolai Meyling

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Noble, R., Dobrovin-Pennington, A., Fitzgerald, J. et al. Improving biocontrol of black vine weevil (Otiorhynchus sulcatus) with entomopathogenic fungi in growing media by incorporating spent mushroom compost. BioControl 63, 697–706 (2018). https://doi.org/10.1007/s10526-018-9877-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-018-9877-5

Keywords

  • Coleoptera
  • Curculionidae
  • Hypocreales
  • Clavicipitaceae
  • Metarhizium brunneum
  • Beauveria bassiana