Skip to main content
Log in

Lecanicillium muscarium and Adalia bipunctata combination for the control of black bean aphid, Aphis fabae

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

The predator Adalia bipunctata (Coleoptera: Coccinellidae) and the entomopathogenic fungus Lecanicillium muscarium, have been considered as potential biological control against aphids. While it can be difficult to achieve a high control level of Aphis fabae Scopoli (Hemiptera: Aphididae) using only a single beneficial agent, the research presented here aimed to determine the interaction between L. muscarium and A. bipunctata potential for control against A. fabae. Lecanicillium muscarium was found to cause about 30% mortality in A. bipunctata and with a reduction in feeding by about 15%. However, co-application of A. bipunctata and L. muscarium can cause an addititive effect in reducing aphid populations, resulting in about 90% reduction in aphid populations compared with control treatment. Thus, these two biocontrol agents have the potential to be complementary. This research study demonstrates that it is possible to combine A. bipunctata with L. muscarium to provide a sustainable method for management of A. fabae on broad bean cropping system and that field studies are required.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aiuchi D, Saito Y, Tone J, Kanazawa M, Tani M, Koike M (2012) The effect of entomopathogenic Lecanicillium spp. (Hypocreales: Cordycipitaceae) on the aphid parasitoid Aphidius colemani (Hymenoptera: Aphidiinae). Appl Entomol Zool 47:351–357

    Article  Google Scholar 

  • Alma CR, Goettel MS, Roitberg BD, Gillespie DR (2007) Combined effects of the entomopathogenic fungus, Paecilomyces fumosoroseus Apopka-97, and the generalist predator, Dicyphus hesperus, on whitefly populations. BioControl 52:669–681

    Article  Google Scholar 

  • Aqueel MA, Leather SR (2013) Virulence of Verticillium lecanii (Z.) against cereal aphids; does timing of infection affect the performance of parasitoids and predators? Pest Manag Sci 69:493–498

    Article  CAS  PubMed  Google Scholar 

  • Baverstock J, Baverstock KE, Clark SJ, Pell JK (2008) Transmission of Pandora neoaphidis in the presence of co-occurring arthropods. J Invertebr Pathol 98:356–359

    Article  CAS  PubMed  Google Scholar 

  • Bayissa W, Ekesi S, Mohamed SA, Kaaya GP, Wagacha JR, Hanna M, Maniania NK (2016) Interactions among vegetable-infesting aphids, the fungal pathogen Metarhizium anisopliae (Ascomycota: Hypocreales) and the predatory coccinellid Cheilomenes lunata (Coleoptera: Coccinellidae). Biocontrol Sci Technol 26:274–290

    Article  Google Scholar 

  • Blackman RL, Eastop VF (2007) Taxonomic issues. In: van Emden HF, Harringto R (eds) Aphids as crop pests. CABI, Wallingford, pp 1–22

    Google Scholar 

  • Cuthbertson AG, Walters KF (2005) Pathogenicity of the entomopathogenic fungus, Lecanicillium muscarium, against the sweetpotato whitefly Bemisia tabaci under laboratory and glasshouse conditions. Mycopathologia 160:315–319

    Article  PubMed  Google Scholar 

  • De Clercq P, Bonte M, van Speybroeck K, Bolckmans K, Deforce K (2005) Development and reproduction of Adalia bipunctata (Coleoptera: Coccinellidae) on eggs of Ephestia kuehniella (Lepidoptera: Phycitidae) and pollen. Pest Manag Sci 61:1129–1132

    Article  PubMed  Google Scholar 

  • Diaz BM, Fereres A (2005) Life table and population parameters of Nasonovia ribisnigri (Homoptera: Aphididae) at different constant temperatures. Environ Entomol 34:527–534

    Article  Google Scholar 

  • Dixon AFG, Hemptinne JL, Kindlmann P (1997) Effectiveness of ladybirds as biological control agents: patterns and processes. Entomophaga 42:73–85

    Article  Google Scholar 

  • Doumbia M, Hemptinne JL, Dixon AFG (1998) Assessment of patch quality by ladybirds: role of larval tracks. Oecologia 113:197–201

    Article  CAS  PubMed  Google Scholar 

  • Eilenberg J, Enkegaard A, Vestergaard S, Jensen B (2000) Biocontrol of pests on plant crops in Denmark: present status and future potential. Biocontrol Sci Technol 10:703–716

    Article  Google Scholar 

  • Ekesi S, Maniania NK, Ampong-Nyarko K, Onu I (1999) Effect of intercropping cowpea with maize on the performance of Metarhizium anisopliae against Megalurothrips sjostedti (Thysanoptera: Thripidae) and predators. Environ Entomol 28:1154–1161

    Article  Google Scholar 

  • Ekesi S, Shah PA, Clark SJ, Pell JK (2005) Conservation biological control with the fungal pathogen Pandora neoaphidis: implications of aphid species, host plant and predator foraging. Agric For Entomol 7:21–30

    Article  Google Scholar 

  • Er MK, Tunaz H, Işikber AA, Satar S, Mart C, Uygun N (2008) Pathogenicity of entomopathogenic fungi to Coccinella septempunctata (L.) (Coleoptera: Coccinellidae) and survey of fungal diseases of Coccinellids. KSU J Sci Eng 11:118–120

    Google Scholar 

  • Fargues J, Vidal C, Smits N, Rougier M, Boulard T, Mermier M, Ridray G (2003) Climatic factors on entomopathogenic hyphomycetes infection of Trialeurodes vaporariorum (Homoptera: Aleyrodidae) in Mediterranean glasshouse tomato. Biol Control 28:320–331

    Article  Google Scholar 

  • Foster SP, Devine G, Devonshire AL (2007) Insecticide resistance. In: van Emden HF, Harringto R (eds) Aphids as crop pests. CABI, Wallingford, pp 261–278

    Chapter  Google Scholar 

  • Goettel MS, Poprawski TJ, Vandenberg JD, Li Z, Roberts DW (1990) Safety to nontarget invertebrates of fungal biocontrol agents. In: Laird M, Lacey LA, Davidson EW (eds) Safety of microbial insecticides. CRC Press, Boca Raton, pp 209–232

    Google Scholar 

  • Ioannidis P (2000) Resistance of Aphis fabae and Myzus persicae to insecticides in sugar beets. In: Proceedings of the 63rd congress of the International Institute for Beet Research, Interlaken, February. International Institute for Beet Research, Brussels, pp 497–504

  • Jalali MA, Tirry L, Arbab A, De Clercq P (2010) Temperature-dependent development of the two-spotted ladybeetle, Adalia bipunctata, on the green peach aphid, Myzus persicae, and a factitious food under constant temperatures. J Insect Sci 10:1536–2442

    Article  Google Scholar 

  • Koureas M, Tsakalof A, Tsatsakis A, Hadjichristodoulou C (2012) Systematic review of biomonitoring studies to determine the association between exposure to organophosphorus and pyrethroid insecticides and human health outcomes. Toxicol Lett 210:155–168

    Article  CAS  PubMed  Google Scholar 

  • Meyling NV, Pell JK (2006) Detection and avoidance of an entomopathogenic fungus by a generalist insect predator. Ecol Entomol 31:162–171

    Article  Google Scholar 

  • Mohammed AA (2016) Interactions between the entomopathogenic fungus Lecanicillium muscarium and the parasitoid Aphidius colemani for the control of green peach aphid Myzus persicae under laboratory and field conditions (PhD thesis). University of Reading, Reading, UK

  • Mohammed AA, Hatcher PE (2016) Effect of temperature, relative humidity and aphid developmental stage on the efficacy of the mycoinsecticide Mycotal® against Myzus persicae. Biocontrol Sci Technol 26:1379–1400

    Article  Google Scholar 

  • Mohammed AA, Hatcher PE (2017) Combining entomopathogenic fungi and parasitoids to control the green peach aphid Myzus persicae. Biol Control 110:44–55

    Article  Google Scholar 

  • Ormond EL, Thomas APM, Pell JK, Freeman SN, Roy HE (2011) Avoidance of a generalist entomopathogenic fungus by the ladybird, Coccinella septempunctata. FEMS Microbiol Ecol 77:229–237

    Article  CAS  PubMed  Google Scholar 

  • Pell JK, Vandenberg JD (2002) Interactions among Diuraphis noxia, the fungal pathogen Paecilomyces fumosoroseus and the coccinellid Hippodamia convergens. Biocontrol Sci Technol 12:217–224

    Article  Google Scholar 

  • Pell JK, Pluke R, Clark SJ, Kenward MG, Alderson PG (1997) Interactions between two aphid natural enemies, the entomopathogenic fungus, Erynia neoaphidis and the predatory beetle, Coccinella septempunctata. J Invertebr Pathol 69:261–268

    Article  Google Scholar 

  • Pineda S, Alatorre R, Schneider ML, Martinez AM (2007) Pathogenicity of two entomopathogenic fungi on Trialeurodes vaporariorum and field evaluation of a Paecilomyces fumosoroseus isolate. Southw Entomol 32:43–52

    Article  Google Scholar 

  • Roy HE, Pell JK, Clark SJ, Alderson PG (1998) Implications of predator foraging on aphid pathogen dynamics. J Invertebr Pathol 71:236–247

    Article  CAS  PubMed  Google Scholar 

  • Roy HE, Baverstock J, Pell JK (2005) The effect of entomopathogenic fungi on the ability of aphids to produce and respond to alarm pheromone. Biocontrol Sci Technol 8:859–866

    Article  Google Scholar 

  • Roy HE, Brown PMJ, Rothery P, Ware RL, Majerus MEN (2008) Interactions between the fungal pathogen Beauveria bassiana and three species of ladybird: Harmonia axyridis, Coccinella septempunctata and Adalia bipunctata. BioControl 53:265–276

    Article  Google Scholar 

  • Soares AO, Coderre D, Schanderl H (2003) Effect of temperature and intraspecific allometry on predation by two phenotypes of Harmonia axyridis Pallas (Coleoptera: Coccinellidae). Environ Entomol 32:939–944

    Article  Google Scholar 

  • Völkl W, Stechmann DH (1998) Parasitism of the black aphid (Aphis fabae) by Lysiphlebus fabarum (Hymenoptera: Aphidiidae): the influence of host plant and habitat. J Appl Entomol 122:201–206

    Article  Google Scholar 

  • Wells PM, Baverstock J, Majerus MEN, Jiggins FM, Roy HE, Pell JK (2011) The effect of the coccinellid Harmonia axyridis (Coleoptera: Coccinellidae) on transmission of the fungal pathogen Pandora neoaphidis (Entomophthorales: Entomophthoraceae) Eur. J Entomol 108:87–90

    Google Scholar 

Download references

Acknowledgements

I would like to thanks the School of Biological Sciences, University of Reading for allowing me doing this research at entomology laboratories. The author is grateful to Dr. Paul Hatcher, School of Biological Sciences, University of Reading for editorial and language assistance. I would also like to thank an anonymous reviewer for valuable and helpful comments on an earlier draft of this manuscript. This research was funded by Ministry of Higher Education and Scientific Research in Iraq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akram A. Mohammed.

Additional information

Handling Editor: Helen Roy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammed, A.A. Lecanicillium muscarium and Adalia bipunctata combination for the control of black bean aphid, Aphis fabae. BioControl 63, 277–287 (2018). https://doi.org/10.1007/s10526-018-9868-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-018-9868-6

Keywords

Navigation