Abstract
The pupae of Bactrocera oleae (Diptera: Tephritidae) complete their development during autumn and winter in the soil, rather than in the drupe, resulting susceptible to edaphic predators. Environmentally friendly methods to control this olive pest involve the identification of its natural enemies. This study evaluated the role of Ocypus olens (Coleoptera: Staphylinidae) in the predation of B. oleae pupae, by means of molecular gut content analysis. Modified dry pitfall traps were used to collect live specimens from low-input olive orchards in Tuscany (Italy). Sampling was fine-tuned with a degree-day model estimating the presence of pest pupae in the soil. PCR analyses carried out on field-collected specimens demonstrated that O. olens is a predator of B. oleae, at least during autumn. These results are consistent with predictions of the degree-day model. Knowledge on species composition, traits and complementarity of the natural enemies of B. oleae pupae needs further investigation to advance conservation biological control strategies.




References
Ádám L (2004) A Bakony és a Vértes holyvafaunája (Coleoptera: Staphylinidae) (The rove beetle fauna of the Bakony and the Vértes Mountains (Coleoptera: Staphylinidae)). Bakonyi Természettudományi Múzeum, Zirc
Adua M (2010) Continua a crescere la filiera degli oli dop e igp. Inf Agric 12:26–31
Albertini A, Pizzolotto R, Petacchi R (2017) Carabid patterns in olive orchards and woody semi-natural habitats: first implications for conservation biological control against Bactrocera oleae. BioControl 62:71–83
Allegro G, Dulla M (2008) Efficienza attrattiva dell’aceto di vino nei confronti dei Carabidi (Coleoptera, Carabidae) in campionamenti con trappole a caduta. Riv Piem St Nat 29:211–224
Allen JC (1976) A modified sine wave method for calculating degree days. Environ Entomol 5:388–396
Andersen A (1997) Densities of overwintering carabids and staphylinids (Col., Carabidae and Staphylinidae) in cereal and grass fields and their boundaries. J Appl Entomol 121:77–80
Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM, Brown VK, Butterfield J, Buse A, Coulson JC, Farrar J, Good JEG, Harrington R, Hartley S, Jones TH, Lindroth RL, Press MC, Symrnioudis I, Watt AD, Whittaker JB (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Change Biol 8:1–16
Beaufoy G (2000) The environmental impact of olive oil production in the European Union: practical options for improving the environmental impact: final report. http://ec.europa.eu/environment/agriculture/pdf/oliveoil.pdf. Last consulted 30 Oct 2017
Bianchi FJJA, Schellhorn NA, Cunningham SA (2013) Habitat functionality for the ecosystem service of pest control: reproduction and feeding sites of pests and natural enemies. Agric For Entomol 15:12–23
Blum M, Lensky IM, Rempoulakis P, Nestel D (2015) Modeling insect population fluctuations with satellite land surface temperature. Ecol Model 311:39–47
Bohac J (1999) Staphylinid beetles as bioindicators. Agric Ecosyst Environ 74:357–372
Bonacci T, Massolo A, Brandmayr P, Brandmayr TZ (2006) Predatory behaviour on ground beetles (Coleoptera: Carabidae) by Ocypus olens (Muller) (Coleoptera: Staphylinidae) under laboratory conditions. Entomol News 117:545–551
Boreau de Roincé C, Lavigne C, Ricard JM, Franck P, Bouvier JC, Garcin A, Symondson WOC (2012) Predation by generalist predators on the codling moth versus a closely-related emerging pest the oriental fruit moth: a molecular analysis. Agric For Entomol 14:260–269
Cavalloro R, Delrio G (1975) Osservazioni sulla distribuzione e sopravvivenza delle pupe di Dacus oleae Gmelin nel terreno. Redia 56:167–175
Chesi F, Quaglia F (1982) Ricerche sulle metodologie di campionamento per la valutazione dell’infestazione dacica. Confronto delle varianze in un campione ampio e in uno ridotto. Studi preliminari in due anni di sperimentazione condotti ad Asciano Pisa (1980–1981). Frustula Entomol 18:243–254
Chiverton PA (1987) Predation of Rhopalosiphum padi by polyphagous predators during the aphids prepeak period in spring barley. Ann Appl Biol 111:257–269
Clough Y, Kruess A, Tscharntke T (2007) Organic versus conventional arable farming systems: functional grouping helps understand staphylinid response. Agric Ecosyst Environ 118:285–290
Daane KM, Johnson MW (2010) Olive fruit fly: managing an ancient pest in modern times. Annu Rev Entomol 55:151–169
Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106
Dimou I, Koutsikopoulos C, Economopoulos AP, Lykakis J (2003) Depth of pupation of the wild olive fruit fly, Bactrocera (Dacus) oleae (Gmel.) (Dipt., Tephritidae), as affected by soil abiotic factors. J Appl Entomol 127:12–17
Dinis AM, Pereira JA, Benhadi-Marín J, Santos SAP (2016a) Feeding preferences and functional responses of Calathus granatensis and Pterostichus globosus (Coleoptera: Carabidae) on pupae of Bactrocera oleae (Diptera: Tephritidae). Bull Entomol Res 106:701–709
Dinis AM, Pereira JA, Pimenta MC, Oliveira J, Benhadi-Marín J, Santos SAP (2016b) Suppression of Bactrocera oleae (Diptera: Tephritidae) pupae by soil arthropods in the olive grove. J Appl Entomol 140:677–687
Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15
Drugmand D (1993) Approche écologique des communautés de coléoptères staphylinidae des haies du Grand-Duché de Luxembourg. Travaux sci Musée Natl d’Hist Nat Luxemb 20:107–154
Eitzinger B, Micic A, Körner M, Traugott M, Scheu S (2013) Unveiling soil food web links: new PCR assays for detection of prey DNA in the gut of soil arthropod predators. Soil Biol Biochem 57:943–945
Elliott NC, Tao FL, Giles KL, Royer TA, Greenstone MH, Shufran KA (2006) First quantitative study of rove beetles in Oklahoma winter wheat fields. BioControl 51:79–87
European Commission, Directorate-General for Agriculture and Rural Development (2012). http://ec.europa.eu/agriculture/olive-oil
Finke DL, Snyder WE (2010) Conserving the benefits of predator biodiversity. Biol Conserv 143:2260–2269
Fleskens L, Duarte F, Eicher I (2009) A conceptual framework for the assessment of multiple functions of agro-ecosystems: a case study of Trás-os-Montes olive groves. J Rural Stud 25:141–155
Gkisakis V, Volakakis N, Kollaros D, Bàrberi P, Kabourakis EM (2016) Soil arthropod community in the olive agroecosystem: determined by environment and farming practices in different management systems and agroecological zones. Agric Ecosyst Environ 218:178–189
Gonçalves MF, Torres LM (2011) The use of the cumulative degree-days to predict olive fly, Bactrocera oleae (Rossi), activity in traditional olive groves from the northeast of Portugal. J Pest Sci 84:187–197
González-Chang M, Wratten SD, Lefort MC, Boyer S (2016) Food webs and biological control: a review of molecular tools used to reveal trophic interactions in agricultural systems. Food Webs 9:4–11
Greenstone MH, Bennett AF (1980) Foraging strategy and metabolic rate in spiders. Ecology 61:1255–1259
Gurdebeke S, Maelfait JP (2002) Pitfall trapping in population genetics studies: finding the right “solution”. J Arachnol 30:255–261
Gurr GM, You M (2016) Conservation biological control of pests in the molecular era: new opportunities to address old constraints. Front Plant Sci 6:1255
Gutierrez AP, Ponti L, Cossu QA (2009) Effects of climate warming on olive and olive fly (Bactrocera oleae (Gmelin)) in California and Italy. Clim Change 95:195–217
Harper GL, King RA, Dodd CS, Harwood JD, Glen DM, Bruford MW, Symondson WOC (2005) Rapid screening of invertebrate predators for multiple prey DNA targets. Mol Ecol 14:819–827
Holland JM, Thomas CFG, Birkett T, Southway S (2007) Spatio-temporal distribution and emergence of beetles in arable fields in relation to soil moisture. Bull Entomol Res 97:89–100
Holland JM, Birkett T, Southway S (2009) Contrasting the farm-scale spatio-temporal dynamics of boundary and field overwintering predatory beetles in arable crops. BioControl 54:19–33
Holland JM, Bianchi FJJA, Entling MH, Moonen AC, Smith B, Jeanneret P (2016) Structure, function and management of semi-natural habitats for conservation biological control: a review of European studies. Pest Manag Sci 72:1638–1651
Irmler U, Gürlich S (2007) What do rove beetles (Coleoptera: Staphylinidae) indicate for site conditions? Faun-Ökol Mitt 8:439–455
Jelaska LS, Franjevic D, Jelaska SD, Symondson WOC (2014) Prey detection in carabid beetles (Coleoptera: Carabidae) in woodland ecosystems by PCR analysis of gut contents. Eur J Entomol 111:631–638
Kendall MG (1945) The treatment of ties in ranking problems. Biometrika 33:239–251
King RA, Read DS, Traugott M, Symondson WOC (2008) Molecular analysis of predation: a review of best practice for DNA-based approaches. Mol Ecol 17:947–963
Lantero E, Matallanas B, Ochando MD, Pascual S, Callejas C (2017) Specific and sensitive primers for the detection of predated olive fruit flies, Bactrocera oleae (Diptera: Tephritidae). Span J Agric Res [S.l.] 15:e1002. https://doi.org/10.5424/sjar/2017152-9920
Lasinio PJ, Zapparoli M (1993) First data on the soil arthropod community in an olive grove in central Italy. In: Paoletti MG, Foissner W, Coleman DC (eds) Soil biota, nutrient cycling, and farming systems. CRC Press, Boca Raton, pp 113–121
Lott DA, Anderson R (2011) The Staphylinidae (rove beetles) of Britain and Ireland. Parts 7 and 8: Oxyporinae, Steninae, Euaesthetinae, Pseudopsinae, Paederinae, Staphylininae (handbooks for the identification of British insects 12/7). Royal Entomological Society, London
Luka H, Germann C, Marggi W, Nagel P, Luka A, Lenzin H, Ochsenbein A, Durrer H (2013) Käfer des Naturschutzgebiets “Petite Camargue Alsacienne”, Saint-Louis, Haut-Rhin, Frankreich (Carabidae, Staphylinidae, Curculionoidea) Kommentierte Artenlisten, Stand 2012. Mitt Naturforsch Ges Basel 14:79–123
Magura T, Nagy DD, Tóthmérész B (2013) Rove beetles respond heterogeneously to urbanization. J Insect Conserv 17:715–724
Malheiro R, Casal S, Baptista P, Pereira JA (2015) A review of Bactrocera oleae (Rossi) impact in olive products: from the tree to the table. Trends Food Sci Technol 44:226–242
Marchi S, Guidotti D, Ricciolini M, Petacchi R (2016) Towards understanding temporal and spatial dynamics of Bactrocera oleae (Rossi) infestations using decade-long agrometeorological time series. Int J Biometeorol 60:1681–1694
Marchini DM, Petacchi R, Marchi S (2017) Bactrocera oleae reproductive biology: new evidence on wintering wild populations in olive groves of Tuscany (Italy). Bull Insectol 70:121–128
Maudsley M, Seeley B, Lewis O (2002) Spatial distribution patterns of predatory arthropods within an English hedgerow in early winter in relation to habitat variables. Agric Ecosyst Environ 89:77–89
Monzó C, Sabater-Muñoz B, Urbaneja A, Castañera P (2011) The ground beetle Pseudophonus rufipes revealed as predator of Ceratitis capitata in citrus orchards. Biol Control 56:17–21
Morris T, Campos M (1999) Predatory insects in olive-grove soil. Zool Baetica 10:149–160
Nagy DD, Magura T, Debnár Z, Horváth R, Tóthmérész B (2015) Shift of rove beetle assemblages in reforestations: does nativity matter? J Insect Conserv 19:1075–1087
Neuenschwander P, Bigler F, Delucchi V, Michelakis S (1983) Natural enemies of preimaginal stages of Dacus oleae Gmel. (Dipt. Tethritidae) in Western Crete. I. Bionomics and phenologies. Boll Lab Entomol Agric Filippo Silvestri 40:3–32
Niccolai M, Marchi S (2005) Il clima della Toscana. RaFT 2005: Rapporto sullo stato delle foreste in Toscana. Sherwood 124(2):16–21
Nield CE (1976) Aspects of the biology of Staphylinus olens (Müller), Britain’s largest Staphylinid beetle. Ecol Entomol 1:117–126
Orsini MM, Daane KM, Sime KR, Nelson EH (2007) Mortality of olive fruit fly pupae in California. Biocontrol Sci Technol 17:797–807
Ortega M, Pascual S (2014) Spatio-temporal analysis of the relationship between landscape structure and the olive fruit fly Bactrocera oleae (Diptera: Tephritidae). Agric For Entomol 16:14–23
Ortega M, Sánchez-Ramos I, González-Núñez M, Pascual S (2017) Time course study of Bactrocera oleae (Diptera: Tephritidae) pupae predation in soil: the effect of landscape structure and soil condition. Agric For Entomol. https://doi.org/10.1111/afe.12245
Orth RE, Moore I, Fisher TW, Legner EF (1975) A rove beetle, Ocypus olens, with potential for biological control of the brown garden snail, Helix aspersa, in California, including a key to the Nearctic species of Ocypus. Can Entomol 107:1111–1116
Paredes D, Cayuela L, Gurr GM, Campos M (2015) Single best species or natural enemy assemblages? A correlational approach to investigating ecosystem function. BioControl 60:37–45
Petacchi R, Marchi S, Federici S, Ragaglini G (2015) Large-scale simulation of temperature-dependent phenology in wintering populations of Bactrocera oleae (Rossi). J Appl Entomol 139:496–509
Pianezzola E, Roth S, Hatteland BA (2013) Predation by carabid beetles on the invasive slug Arion vulgaris in an agricultural semi-field experiment. Bull Entomol Res 103:225–232
Picchi MS, Marchi S, Albertini A, Petacchi R (2017) Organic management of olive orchards increases the predation rate of overwintering pupae of Bactrocera oleae (Diptera: Tephritidae). Biol Control 108:9–15
Pohl GR, Langor DW, Spence JR (2007) Rove beetles and ground beetles (Coleoptera: Staphylinidae, Carabidae) as indicators of harvest and regeneration practices in western Canadian foothills forests. Biol Conserv 137:294–307
R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.r-project.org/
Rejili M, Fernandes T, Dinis AM, Pereira JA, Baptista P, Santos SA, Lino-Neto T (2016) A PCR-based diagnostic assay for detecting DNA of the olive fruit fly, Bactrocera oleae, in the gut of soil-living arthropods. Bull Entomol Res 106:695–699
Rodríguez E, González B, Campos M (2012) Natural enemies associated with cereal cover crops in olive groves. Bull Insectol 65:43–49
Rondoni G, Athey KJ, Harwood JD, Conti E, Ricci C, Obrycki JJ (2015) Development and application of molecular gut-content analysis to detect aphid and coccinellid predation by Harmonia axyridis (Coleoptera: Coccinellidae) in Italy. Insect Sci 22:719–730
Staudacher K, Jonsson M, Traugott M (2016) Diagnostic PCR assays to unravel food web interactions in cereal crops with focus on biological control of aphids. J Pest Sci 89:281–293
Straub CS, Finke DL, Snyder WE (2008) Are the conservation of natural enemy biodiversity and biological control compatible goals? Biol Control 45:225–237
Sustek Z (1982) The effect of Actellic EC 50 on the Carabidae and Staphylinidae in a Norway spruce forest in the Jizerske Hory Mountains. Biol Brat 37:131–139
Symondson WOC (2002) Molecular identification of prey in predator diets. Mol Ecol 11:627–641
Szendrei Z, Greenstone MH, Payton ME, Weber DC (2010) Molecular gut-content analysis of a predator assemblage reveals the effect of habitat manipulation on biological control in the field. Basic Appl Ecol 11:153–161
Thomas CFG, Parkinson L, Griffiths GJK, Marshall Garcia AF, Marshall EJP (2001) Aggregation and temporal stability of carabid beetle distributions in field and hedgerow habitats. J Appl Ecol 38:100–116
Tóthmérész B, Nagy DD, Mizser S, Bogyó D, Magura T (2014) Edge effects on ground-dwelling beetles (Carabidae and Staphylinidae) in oak forest–forest edge-grassland habitats in Hungary. Eur J Entomol 111:686–691
Tzokas I, Liantraki Z, Kollaros D (2014) Comparison of coleopteran fauna in olive orchards under different production systems in the Messara’s Valley, on Crete Island, Greece. Hentomol Hell 23:25–32
Vickerman GP, Sunderland KD (1977) Some effect of dimethoate on arthropods in winter wheat. J Appl Ecol 14:767–777
Winder L, Hirst D, Carter N, Wratten S, Sopp P (1994) Estimating predation of the grain aphid Sitobion avenae by polyphagous predators. J Appl Ecol 31:1–12
Zaidi RH, Jaal Z, Hawkes NJ, Hemingway J, Symondson WOC (1999) Can multiple-copy sequences of prey DNA be detected amongst the gut contents of invertebrate predators? Mol Ecol 8:2081–2087
Acknowledgements
We are grateful to Dr. Diego Guidotti (AEDIT Srl) for the CDD model implementation and to Dr. Gionata Bocci for the botanical identification. We thank Dr. Le Li and Dr. Valerio Luconi for their valuable suggestions. We express particular acknowledgment and appreciation to landowners for allowing the access to their olive orchards and answering the questionnaires. This work has been realized with the financial support of Scuola Superiore Sant’Anna, PhD Programme in Agrobiodiversity. We thank the anonymous reviewers and the editor for their comments to improve our manuscript.
Author information
Authors and Affiliations
Corresponding author
Additional information
Handling Editor: Marta Montserrat.
Rights and permissions
About this article
Cite this article
Albertini, A., Marchi, S., Ratti, C. et al. Bactrocera oleae pupae predation by Ocypus olens detected by molecular gut content analysis. BioControl 63, 227–239 (2018). https://doi.org/10.1007/s10526-017-9860-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10526-017-9860-6