Skip to main content
Log in

Bactrocera oleae pupae predation by Ocypus olens detected by molecular gut content analysis

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

The pupae of Bactrocera oleae (Diptera: Tephritidae) complete their development during autumn and winter in the soil, rather than in the drupe, resulting susceptible to edaphic predators. Environmentally friendly methods to control this olive pest involve the identification of its natural enemies. This study evaluated the role of Ocypus olens (Coleoptera: Staphylinidae) in the predation of B. oleae pupae, by means of molecular gut content analysis. Modified dry pitfall traps were used to collect live specimens from low-input olive orchards in Tuscany (Italy). Sampling was fine-tuned with a degree-day model estimating the presence of pest pupae in the soil. PCR analyses carried out on field-collected specimens demonstrated that O. olens is a predator of B. oleae, at least during autumn. These results are consistent with predictions of the degree-day model. Knowledge on species composition, traits and complementarity of the natural enemies of B. oleae pupae needs further investigation to advance conservation biological control strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Ádám L (2004) A Bakony és a Vértes holyvafaunája (Coleoptera: Staphylinidae) (The rove beetle fauna of the Bakony and the Vértes Mountains (Coleoptera: Staphylinidae)). Bakonyi Természettudományi Múzeum, Zirc

    Google Scholar 

  • Adua M (2010) Continua a crescere la filiera degli oli dop e igp. Inf Agric 12:26–31

    Google Scholar 

  • Albertini A, Pizzolotto R, Petacchi R (2017) Carabid patterns in olive orchards and woody semi-natural habitats: first implications for conservation biological control against Bactrocera oleae. BioControl 62:71–83

    Article  CAS  Google Scholar 

  • Allegro G, Dulla M (2008) Efficienza attrattiva dell’aceto di vino nei confronti dei Carabidi (Coleoptera, Carabidae) in campionamenti con trappole a caduta. Riv Piem St Nat 29:211–224

    Google Scholar 

  • Allen JC (1976) A modified sine wave method for calculating degree days. Environ Entomol 5:388–396

    Article  Google Scholar 

  • Andersen A (1997) Densities of overwintering carabids and staphylinids (Col., Carabidae and Staphylinidae) in cereal and grass fields and their boundaries. J Appl Entomol 121:77–80

    Article  Google Scholar 

  • Bale JS, Masters GJ, Hodkinson ID, Awmack C, Bezemer TM, Brown VK, Butterfield J, Buse A, Coulson JC, Farrar J, Good JEG, Harrington R, Hartley S, Jones TH, Lindroth RL, Press MC, Symrnioudis I, Watt AD, Whittaker JB (2002) Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob Change Biol 8:1–16

    Article  Google Scholar 

  • Beaufoy G (2000) The environmental impact of olive oil production in the European Union: practical options for improving the environmental impact: final report. http://ec.europa.eu/environment/agriculture/pdf/oliveoil.pdf. Last consulted 30 Oct 2017

  • Bianchi FJJA, Schellhorn NA, Cunningham SA (2013) Habitat functionality for the ecosystem service of pest control: reproduction and feeding sites of pests and natural enemies. Agric For Entomol 15:12–23

    Article  Google Scholar 

  • Blum M, Lensky IM, Rempoulakis P, Nestel D (2015) Modeling insect population fluctuations with satellite land surface temperature. Ecol Model 311:39–47

    Article  Google Scholar 

  • Bohac J (1999) Staphylinid beetles as bioindicators. Agric Ecosyst Environ 74:357–372

    Article  Google Scholar 

  • Bonacci T, Massolo A, Brandmayr P, Brandmayr TZ (2006) Predatory behaviour on ground beetles (Coleoptera: Carabidae) by Ocypus olens (Muller) (Coleoptera: Staphylinidae) under laboratory conditions. Entomol News 117:545–551

    Article  Google Scholar 

  • Boreau de Roincé C, Lavigne C, Ricard JM, Franck P, Bouvier JC, Garcin A, Symondson WOC (2012) Predation by generalist predators on the codling moth versus a closely-related emerging pest the oriental fruit moth: a molecular analysis. Agric For Entomol 14:260–269

    Article  Google Scholar 

  • Cavalloro R, Delrio G (1975) Osservazioni sulla distribuzione e sopravvivenza delle pupe di Dacus oleae Gmelin nel terreno. Redia 56:167–175

    Google Scholar 

  • Chesi F, Quaglia F (1982) Ricerche sulle metodologie di campionamento per la valutazione dell’infestazione dacica. Confronto delle varianze in un campione ampio e in uno ridotto. Studi preliminari in due anni di sperimentazione condotti ad Asciano Pisa (1980–1981). Frustula Entomol 18:243–254

    Google Scholar 

  • Chiverton PA (1987) Predation of Rhopalosiphum padi by polyphagous predators during the aphids prepeak period in spring barley. Ann Appl Biol 111:257–269

    Article  Google Scholar 

  • Clough Y, Kruess A, Tscharntke T (2007) Organic versus conventional arable farming systems: functional grouping helps understand staphylinid response. Agric Ecosyst Environ 118:285–290

    Article  Google Scholar 

  • Daane KM, Johnson MW (2010) Olive fruit fly: managing an ancient pest in modern times. Annu Rev Entomol 55:151–169

    Article  CAS  PubMed  Google Scholar 

  • Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106

    Article  CAS  PubMed  Google Scholar 

  • Dimou I, Koutsikopoulos C, Economopoulos AP, Lykakis J (2003) Depth of pupation of the wild olive fruit fly, Bactrocera (Dacus) oleae (Gmel.) (Dipt., Tephritidae), as affected by soil abiotic factors. J Appl Entomol 127:12–17

    Article  Google Scholar 

  • Dinis AM, Pereira JA, Benhadi-Marín J, Santos SAP (2016a) Feeding preferences and functional responses of Calathus granatensis and Pterostichus globosus (Coleoptera: Carabidae) on pupae of Bactrocera oleae (Diptera: Tephritidae). Bull Entomol Res 106:701–709

    Article  CAS  PubMed  Google Scholar 

  • Dinis AM, Pereira JA, Pimenta MC, Oliveira J, Benhadi-Marín J, Santos SAP (2016b) Suppression of Bactrocera oleae (Diptera: Tephritidae) pupae by soil arthropods in the olive grove. J Appl Entomol 140:677–687

    Article  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Drugmand D (1993) Approche écologique des communautés de coléoptères staphylinidae des haies du Grand-Duché de Luxembourg. Travaux sci Musée Natl d’Hist Nat Luxemb 20:107–154

    Google Scholar 

  • Eitzinger B, Micic A, Körner M, Traugott M, Scheu S (2013) Unveiling soil food web links: new PCR assays for detection of prey DNA in the gut of soil arthropod predators. Soil Biol Biochem 57:943–945

    Article  CAS  Google Scholar 

  • Elliott NC, Tao FL, Giles KL, Royer TA, Greenstone MH, Shufran KA (2006) First quantitative study of rove beetles in Oklahoma winter wheat fields. BioControl 51:79–87

    Article  Google Scholar 

  • European Commission, Directorate-General for Agriculture and Rural Development (2012). http://ec.europa.eu/agriculture/olive-oil

  • Finke DL, Snyder WE (2010) Conserving the benefits of predator biodiversity. Biol Conserv 143:2260–2269

    Article  Google Scholar 

  • Fleskens L, Duarte F, Eicher I (2009) A conceptual framework for the assessment of multiple functions of agro-ecosystems: a case study of Trás-os-Montes olive groves. J Rural Stud 25:141–155

    Article  Google Scholar 

  • Gkisakis V, Volakakis N, Kollaros D, Bàrberi P, Kabourakis EM (2016) Soil arthropod community in the olive agroecosystem: determined by environment and farming practices in different management systems and agroecological zones. Agric Ecosyst Environ 218:178–189

    Article  Google Scholar 

  • Gonçalves MF, Torres LM (2011) The use of the cumulative degree-days to predict olive fly, Bactrocera oleae (Rossi), activity in traditional olive groves from the northeast of Portugal. J Pest Sci 84:187–197

    Article  Google Scholar 

  • González-Chang M, Wratten SD, Lefort MC, Boyer S (2016) Food webs and biological control: a review of molecular tools used to reveal trophic interactions in agricultural systems. Food Webs 9:4–11

    Article  Google Scholar 

  • Greenstone MH, Bennett AF (1980) Foraging strategy and metabolic rate in spiders. Ecology 61:1255–1259

    Article  Google Scholar 

  • Gurdebeke S, Maelfait JP (2002) Pitfall trapping in population genetics studies: finding the right “solution”. J Arachnol 30:255–261

    Article  Google Scholar 

  • Gurr GM, You M (2016) Conservation biological control of pests in the molecular era: new opportunities to address old constraints. Front Plant Sci 6:1255

    Article  PubMed  PubMed Central  Google Scholar 

  • Gutierrez AP, Ponti L, Cossu QA (2009) Effects of climate warming on olive and olive fly (Bactrocera oleae (Gmelin)) in California and Italy. Clim Change 95:195–217

    Article  Google Scholar 

  • Harper GL, King RA, Dodd CS, Harwood JD, Glen DM, Bruford MW, Symondson WOC (2005) Rapid screening of invertebrate predators for multiple prey DNA targets. Mol Ecol 14:819–827

    Article  CAS  PubMed  Google Scholar 

  • Holland JM, Thomas CFG, Birkett T, Southway S (2007) Spatio-temporal distribution and emergence of beetles in arable fields in relation to soil moisture. Bull Entomol Res 97:89–100

    Article  CAS  PubMed  Google Scholar 

  • Holland JM, Birkett T, Southway S (2009) Contrasting the farm-scale spatio-temporal dynamics of boundary and field overwintering predatory beetles in arable crops. BioControl 54:19–33

    Article  Google Scholar 

  • Holland JM, Bianchi FJJA, Entling MH, Moonen AC, Smith B, Jeanneret P (2016) Structure, function and management of semi-natural habitats for conservation biological control: a review of European studies. Pest Manag Sci 72:1638–1651

    Article  CAS  PubMed  Google Scholar 

  • Irmler U, Gürlich S (2007) What do rove beetles (Coleoptera: Staphylinidae) indicate for site conditions? Faun-Ökol Mitt 8:439–455

    Google Scholar 

  • Jelaska LS, Franjevic D, Jelaska SD, Symondson WOC (2014) Prey detection in carabid beetles (Coleoptera: Carabidae) in woodland ecosystems by PCR analysis of gut contents. Eur J Entomol 111:631–638

    Google Scholar 

  • Kendall MG (1945) The treatment of ties in ranking problems. Biometrika 33:239–251

    Article  CAS  PubMed  Google Scholar 

  • King RA, Read DS, Traugott M, Symondson WOC (2008) Molecular analysis of predation: a review of best practice for DNA-based approaches. Mol Ecol 17:947–963

    Article  CAS  PubMed  Google Scholar 

  • Lantero E, Matallanas B, Ochando MD, Pascual S, Callejas C (2017) Specific and sensitive primers for the detection of predated olive fruit flies, Bactrocera oleae (Diptera: Tephritidae). Span J Agric Res [S.l.] 15:e1002. https://doi.org/10.5424/sjar/2017152-9920

  • Lasinio PJ, Zapparoli M (1993) First data on the soil arthropod community in an olive grove in central Italy. In: Paoletti MG, Foissner W, Coleman DC (eds) Soil biota, nutrient cycling, and farming systems. CRC Press, Boca Raton, pp 113–121

    Google Scholar 

  • Lott DA, Anderson R (2011) The Staphylinidae (rove beetles) of Britain and Ireland. Parts 7 and 8: Oxyporinae, Steninae, Euaesthetinae, Pseudopsinae, Paederinae, Staphylininae (handbooks for the identification of British insects 12/7). Royal Entomological Society, London

  • Luka H, Germann C, Marggi W, Nagel P, Luka A, Lenzin H, Ochsenbein A, Durrer H (2013) Käfer des Naturschutzgebiets “Petite Camargue Alsacienne”, Saint-Louis, Haut-Rhin, Frankreich (Carabidae, Staphylinidae, Curculionoidea) Kommentierte Artenlisten, Stand 2012. Mitt Naturforsch Ges Basel 14:79–123

    Google Scholar 

  • Magura T, Nagy DD, Tóthmérész B (2013) Rove beetles respond heterogeneously to urbanization. J Insect Conserv 17:715–724

    Article  Google Scholar 

  • Malheiro R, Casal S, Baptista P, Pereira JA (2015) A review of Bactrocera oleae (Rossi) impact in olive products: from the tree to the table. Trends Food Sci Technol 44:226–242

    Article  CAS  Google Scholar 

  • Marchi S, Guidotti D, Ricciolini M, Petacchi R (2016) Towards understanding temporal and spatial dynamics of Bactrocera oleae (Rossi) infestations using decade-long agrometeorological time series. Int J Biometeorol 60:1681–1694

    Article  PubMed  Google Scholar 

  • Marchini DM, Petacchi R, Marchi S (2017) Bactrocera oleae reproductive biology: new evidence on wintering wild populations in olive groves of Tuscany (Italy). Bull Insectol 70:121–128

    Google Scholar 

  • Maudsley M, Seeley B, Lewis O (2002) Spatial distribution patterns of predatory arthropods within an English hedgerow in early winter in relation to habitat variables. Agric Ecosyst Environ 89:77–89

    Article  Google Scholar 

  • Monzó C, Sabater-Muñoz B, Urbaneja A, Castañera P (2011) The ground beetle Pseudophonus rufipes revealed as predator of Ceratitis capitata in citrus orchards. Biol Control 56:17–21

    Article  Google Scholar 

  • Morris T, Campos M (1999) Predatory insects in olive-grove soil. Zool Baetica 10:149–160

    Google Scholar 

  • Nagy DD, Magura T, Debnár Z, Horváth R, Tóthmérész B (2015) Shift of rove beetle assemblages in reforestations: does nativity matter? J Insect Conserv 19:1075–1087

    Article  Google Scholar 

  • Neuenschwander P, Bigler F, Delucchi V, Michelakis S (1983) Natural enemies of preimaginal stages of Dacus oleae Gmel. (Dipt. Tethritidae) in Western Crete. I. Bionomics and phenologies. Boll Lab Entomol Agric Filippo Silvestri 40:3–32

    Google Scholar 

  • Niccolai M, Marchi S (2005) Il clima della Toscana. RaFT 2005: Rapporto sullo stato delle foreste in Toscana. Sherwood 124(2):16–21

    Google Scholar 

  • Nield CE (1976) Aspects of the biology of Staphylinus olens (Müller), Britain’s largest Staphylinid beetle. Ecol Entomol 1:117–126

    Article  Google Scholar 

  • Orsini MM, Daane KM, Sime KR, Nelson EH (2007) Mortality of olive fruit fly pupae in California. Biocontrol Sci Technol 17:797–807

    Article  Google Scholar 

  • Ortega M, Pascual S (2014) Spatio-temporal analysis of the relationship between landscape structure and the olive fruit fly Bactrocera oleae (Diptera: Tephritidae). Agric For Entomol 16:14–23

    Article  Google Scholar 

  • Ortega M, Sánchez-Ramos I, González-Núñez M, Pascual S (2017) Time course study of Bactrocera oleae (Diptera: Tephritidae) pupae predation in soil: the effect of landscape structure and soil condition. Agric For Entomol. https://doi.org/10.1111/afe.12245

    Google Scholar 

  • Orth RE, Moore I, Fisher TW, Legner EF (1975) A rove beetle, Ocypus olens, with potential for biological control of the brown garden snail, Helix aspersa, in California, including a key to the Nearctic species of Ocypus. Can Entomol 107:1111–1116

    Article  Google Scholar 

  • Paredes D, Cayuela L, Gurr GM, Campos M (2015) Single best species or natural enemy assemblages? A correlational approach to investigating ecosystem function. BioControl 60:37–45

    Article  Google Scholar 

  • Petacchi R, Marchi S, Federici S, Ragaglini G (2015) Large-scale simulation of temperature-dependent phenology in wintering populations of Bactrocera oleae (Rossi). J Appl Entomol 139:496–509

    Article  Google Scholar 

  • Pianezzola E, Roth S, Hatteland BA (2013) Predation by carabid beetles on the invasive slug Arion vulgaris in an agricultural semi-field experiment. Bull Entomol Res 103:225–232

    Article  CAS  PubMed  Google Scholar 

  • Picchi MS, Marchi S, Albertini A, Petacchi R (2017) Organic management of olive orchards increases the predation rate of overwintering pupae of Bactrocera oleae (Diptera: Tephritidae). Biol Control 108:9–15

    Article  Google Scholar 

  • Pohl GR, Langor DW, Spence JR (2007) Rove beetles and ground beetles (Coleoptera: Staphylinidae, Carabidae) as indicators of harvest and regeneration practices in western Canadian foothills forests. Biol Conserv 137:294–307

    Article  Google Scholar 

  • R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.r-project.org/

  • Rejili M, Fernandes T, Dinis AM, Pereira JA, Baptista P, Santos SA, Lino-Neto T (2016) A PCR-based diagnostic assay for detecting DNA of the olive fruit fly, Bactrocera oleae, in the gut of soil-living arthropods. Bull Entomol Res 106:695–699

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez E, González B, Campos M (2012) Natural enemies associated with cereal cover crops in olive groves. Bull Insectol 65:43–49

    Google Scholar 

  • Rondoni G, Athey KJ, Harwood JD, Conti E, Ricci C, Obrycki JJ (2015) Development and application of molecular gut-content analysis to detect aphid and coccinellid predation by Harmonia axyridis (Coleoptera: Coccinellidae) in Italy. Insect Sci 22:719–730

    Article  CAS  PubMed  Google Scholar 

  • Staudacher K, Jonsson M, Traugott M (2016) Diagnostic PCR assays to unravel food web interactions in cereal crops with focus on biological control of aphids. J Pest Sci 89:281–293

    Article  Google Scholar 

  • Straub CS, Finke DL, Snyder WE (2008) Are the conservation of natural enemy biodiversity and biological control compatible goals? Biol Control 45:225–237

    Article  Google Scholar 

  • Sustek Z (1982) The effect of Actellic EC 50 on the Carabidae and Staphylinidae in a Norway spruce forest in the Jizerske Hory Mountains. Biol Brat 37:131–139

    CAS  Google Scholar 

  • Symondson WOC (2002) Molecular identification of prey in predator diets. Mol Ecol 11:627–641

    Article  CAS  PubMed  Google Scholar 

  • Szendrei Z, Greenstone MH, Payton ME, Weber DC (2010) Molecular gut-content analysis of a predator assemblage reveals the effect of habitat manipulation on biological control in the field. Basic Appl Ecol 11:153–161

    Article  CAS  Google Scholar 

  • Thomas CFG, Parkinson L, Griffiths GJK, Marshall Garcia AF, Marshall EJP (2001) Aggregation and temporal stability of carabid beetle distributions in field and hedgerow habitats. J Appl Ecol 38:100–116

    Article  Google Scholar 

  • Tóthmérész B, Nagy DD, Mizser S, Bogyó D, Magura T (2014) Edge effects on ground-dwelling beetles (Carabidae and Staphylinidae) in oak forest–forest edge-grassland habitats in Hungary. Eur J Entomol 111:686–691

    Google Scholar 

  • Tzokas I, Liantraki Z, Kollaros D (2014) Comparison of coleopteran fauna in olive orchards under different production systems in the Messara’s Valley, on Crete Island, Greece. Hentomol Hell 23:25–32

    Google Scholar 

  • Vickerman GP, Sunderland KD (1977) Some effect of dimethoate on arthropods in winter wheat. J Appl Ecol 14:767–777

    Article  CAS  Google Scholar 

  • Winder L, Hirst D, Carter N, Wratten S, Sopp P (1994) Estimating predation of the grain aphid Sitobion avenae by polyphagous predators. J Appl Ecol 31:1–12

    Article  Google Scholar 

  • Zaidi RH, Jaal Z, Hawkes NJ, Hemingway J, Symondson WOC (1999) Can multiple-copy sequences of prey DNA be detected amongst the gut contents of invertebrate predators? Mol Ecol 8:2081–2087

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. Diego Guidotti (AEDIT Srl) for the CDD model implementation and to Dr. Gionata Bocci for the botanical identification. We thank Dr. Le Li and Dr. Valerio Luconi for their valuable suggestions. We express particular acknowledgment and appreciation to landowners for allowing the access to their olive orchards and answering the questionnaires. This work has been realized with the financial support of Scuola Superiore Sant’Anna, PhD Programme in Agrobiodiversity. We thank the anonymous reviewers and the editor for their comments to improve our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alice Albertini.

Additional information

Handling Editor: Marta Montserrat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Albertini, A., Marchi, S., Ratti, C. et al. Bactrocera oleae pupae predation by Ocypus olens detected by molecular gut content analysis. BioControl 63, 227–239 (2018). https://doi.org/10.1007/s10526-017-9860-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-017-9860-6

Keywords

Navigation