Abstract
Classical biological control using insects has led to the partial or complete control of at least 226 invasive insect and 57 invasive weed species worldwide since 1888. However, at least ten introductions of biological control agents have led to unintended negative consequences and these cases have led to a focus on risk that came to dominate the science and practice of classical biological control by the 1990s. Based upon historical developments in the field we consider that the era of focus on benefits began in 1888 and that it was supplanted by an era in which the focus was on risks during the 1990s. This paradigm shift greatly improved the safety of biological control releases but also led to a decline in the number of introductions, probably resulting in opportunity costs. We note here the development of a third paradigm: one in which the benefits and risks of biological control are clearly and explicitly balanced so that decisions can be made that maximize benefits while minimizing risks.
Access this article
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
Similar content being viewed by others
References
Andraca-Gomez G, Ordano M, Boege K, Dominguez CA, Pinero D, Perez-Ishiwara R, Perez-Camacho J, Canizares M, Fornoni J (2015) A potential invasion route of Cactoblastis cactorum within the Caribbean region matches historical hurricane trajectories. Biol Invasions 17:1397–1406
Barratt BIP, Moeed A (2005) Environmental safety of biological control: policy and practice in New Zealand. Biol Control 35:247–252
Beddington JR, Free CA, Lawton JH (1978) Characteristics of successful natural enemies in models of biological control of insect pests. Nature 273:513–519
Benson J, van Driesche RG, Pasquale A, Elkinton J (2003) Introduced braconid parasitoids and range reduction of a native butterfly in New England. Biol Control 28:197–213
Bigler F, Kölliker-Ott UM (2006) Balancing environmental risks and benefits: a basic approach. In: Bigler F, Babendreier D, Kuhlmann U (eds) Environmental impact of invertebrates for biological control of arthropods. CABI Publishing, Oxon, pp 273–286
Bigler F, Babendreier D, Kuhlmann U (2006) Environmental impact of invertebrates for biological control of arthropods: methods and risk assessment. CABI Publising, Oxon
Blower SM, Koelle K, Kirschner DE, Mills J (2001) Live attenuated HIV vaccines: predicting the tradeoff between efficacy and safety. Proc Natl Acad Sci USA 98:3618–3623
Boettner GH, Elkinton JS, Boettner CJ (2000) Effects of a biological control introduction on three nontarget native species of saturniid moths. Conserv Biol 14:1798–1806
Caltagirone LE, Doutt RL (1989) The history of the vedalia beetle importation to California and its impact on the development of biological control. Annu Rev Entomol 34:1–16
Carvalheiro LG, Buckley YM, Ventim R, Fowler SV, Memmott J (2008) Apparent competition can compromise the safety of highly specific biological control agents. Ecol Lett 11:690–700
Civeyrel L, Simberloff D (1996) A tale of two snails: is the cure worse than the disease? Biodivers Conserv 5:1231–1252
Cock MJW, Day RK, Hinz H, Pollard KM, Thomas SE, Williams FE, Witt ABR, Shaw RH (2015) The impacts of some classical biological control successes. CAB Rev 10:1–57
Cock MJW, Murphy ST, Kairo MTK, Thompson E, Murphy RJ, Francis AW (2016) Trends in the classical biological control of insect pests by insects: an update of the BIOCAT database. BioControl 61:349–363
Coll M, Guershon M (2002) Omnivory in terrestrial arthropods: mixing plant and prey diets. Annu Rev Entomol 47:267–298
Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeen S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260
Crawley MJ (1989) The successes and failures of weed biocontrol using insects. Biocontrol News Info 10:213–223
Culliney TW (2005) Benefits of classical biological control for managing invasive plants. Crit Rev Pl Sci 24:131–150
De Clercq P, Mason PG, Babendreier D (2011) Benefits and risks of exotic biological control agents. BioControl 56:681–698
Denoth M, Frid L, Myers JH (2002) Multiple agents in biological control: improving the odds? Biol Control 24:20–30
Ehlers R-U (2011) Regulation of biological control agents and the EU policy support action REBECA. In: Ehlers R-U (ed) Regulation of biological control agents. Springer, Dordrecht, pp 2–23
Esler KJ, van Wilgen BW, te Roller K, Wood AR, van der Merwe JH (2010) A landscape-level assessment of the long-term integrated control of an invasive shrub in South Africa. Biol Invasions 12:211–218
Evans EW (2004) Habitat displacement of North American ladybirds by an introduced species. Ecology 85:637–647
Follett PA, Duan JJ (2000) Nontarget effects of biological control. Kluwer Academic Publishers, Norwell
Greathead DJ, Greathead AH (1992) Biological control of insects pests by insect parasitoids and predators: the BIOCAT database. Biocontrol News Inf 13:61N–67N
Gurr GM, Wratten SD (2000) Biological control: measures of success. Kluwer, Dordrecht
Gutierrez AP, Caltagirone LE, Meikle W (1999) Evaluation of results, economics of biological control. In: Bellows TS, Fisher TW (eds) Handbook of biological control. Academic, San Diego, pp 243–252
Hajek AE, McManus ML, Junior ID (2005) Catalogue of introductions of pathogens and nematodes for classical biological control of insects and mites. USDA Forest Service, Forest Health Technology Enterprise Team, Morgantown
Hajek AE, McManus DP, Delalibera I Jr (2007) A review of introductions of pathogens and nematodes for classical biological control of insects and mites. Biol Control 41:1–13
Hall RW, Ehler LE (1979) Rate of establishment of natural enemies in classical biological control. Bull Entomol Soc Am 25:280–282
Hall RW, Ehler LE, Bisabri-Ershadi B (1980) Rate of success in classical biological control of arthropods. Bull Entomol Soc Am 26:111–114
Harmon JP, Stephens E, Losey J (2007) The decline of native coccinellids (Coleoptera: Coccinellidae) in the United States and Canada. J Ins Cons 11:85–94
Harrison L, Moeed A, Sheppard A (2005) Regulation of the release of biological control agents of arthropods in New Zealand and Australia. In: Hoddle M (ed) International symposium on biological control of arthropods. US Forest Service, Davos, pp 715–725
Hawkins BA, Cornell HV (1994) Maximum parasitism rates and successful biological control. Science 266:1886
Heimpel GE, Mills NJ (2017) Biological control: ecology and applications. Cambridge University Press, Cambridge
Heimpel GE, Yang Y, Hill J, Ragsdale DW (2013) Environmental consequences of invasive species: greenhouse gas emissions of insecticide use and the role of biological control in reducing emissions. PLoS ONE 8(8):e72293
Hennemann ML, Memmott J (2001) Infiltration of a Hawaiian community by introduced biological control agents. Science 293:1314–1316
Hill R, Campbell D, Hayes L, Corin S, Fowler S (2013) Why the New Zealand regulatory system for introducing new biological control agents works. In: XIII International Symposium on Biological Control of Weeds, vol 2011. Waikoloa, Hawaii, USA, pp 75–83
Hinz H, Schwartzlander M, Gassmann A, Bourchier RS (2014) Successes we may not have had: a retrospective analysis of selected weed biological control agents in the United States. Inv Plant Sci Manag 7:565–579
Hoddle MS, Crespo Ramirez C, Hoddle CD, Loayza J, Lincango PM, van Driesche RG, Causton CE (2013) Post release evaluation of Rodolia cardinalis (Coleoptera: Coccinellidae) for control of Icerya purchasi (Hemiptera: Monophlebidae) in the Galapagos Islands. Biol Control 67:262–274
Holt RD, Hochberg ME (2001) Indirect interactions: community modules and biological control: a theoretical perspective. In: Wajnberg E, Scott JK, Quimby PC (eds) Evaluating indirect ecological effects of biological control. CABI Press, Oxon, pp 13–38
Howarth FG (1991) Environmental impacts of classical biological control. Annu Rev Entomol 36:485–509
Hunt EJ, Kuhlmann U, Sheppard A, Qin T-K, Barratt BIP, Harrison L, Mason PG, Parker D, Flanders RV, Goolsby J (2008) Review of invertebrate biological control agent regulation in Australia, New Zealand, Canada and the USA: recommendations for a harmonized European system. J Appl Entomol 132:89–123
Kaser JM, Heimpel GE (2015) Linking risk and efficacy in biological control host-parasitoid models. Biol Control 90:49–60
Kaser JM, Ode PJ (2016) Hidden risks and benefits of natural enemy mediated indirect effects. Curr Opin Ins Sci 14:105–111
Kimberling DN (2004) Lessons from history: predicting successes and risks of intentional introductions for arthropod biological control. Biol Invasion 6:301–318
Lane SD, Mills NJ, Getz WM (1999) The effects of parasitoid fecundity and host taxon on the biological control of insect pests: the relationship between theory and data. Ecol Ent 24:181–190
Lazo-Langer JA, Rodger MA, Barrowman NJ, Ramsay T, Wells PS, Coyle DA (2012) Comparing multiple competing interventions in the absence of randomized trials using clinical risk-benefit analysis. BMC Med Res Meth 12:3
Losey JE, Vaughan M (2006) The economic value of ecological services provided by insects. BioScience 56:311–323
Louda SM, O’Brien CW (2002) Unexpected ecological effects of distributing the exotic weevil, Larinus planus (F.), for the biological control of Canada thistle. Cons Biol 16:717–727
Louda SM, Kendall D, Connor J, Simberloff D (1997) Ecological effects of an insect introduced for the biological control of weeds. Science 277:1088–1090
Louda SM, Pemberton RW, Johnson MT, Follett PA (2003) Nontarget effects-the Achilles’ heel of biological control? Annu Rev Entomol 48:365–396
Luck RF (1990) Evaluation of natural enemies for biological control: a behavioral approach. Trends Ecol Evol 5:196–199
Lundgren JG (2009) Relationships of natural enemies and non-prey foods. Springer, Dordrecht
Maron M, Cockfield G (2008) Managing trade-offs in landscape restoration and revegetation projects. Ecol Appl 18:2041–2049
McBride MF, Wilson KA, Burger J, Fang YC, Lulow M, Olson D, O’Connell M, Possingham HP (2010) Mathematical problem definition for ecological restoration planning. Ecol Modell 221:2243–2250
McEvoy PB, Coombs EV (2000) Why things bite back: unintended consequences of biological weed control. In: Follett PA, Duan JJ (eds) Nontarget effects of biological control. Kluwer, Dordrecht, pp 167–194
Messing RH, Wright MG (2006) Biological control of invasive species: solution or pollution? Front Ecol Environ 4:132–140
Mills NJ (2006) Accounting for differential success in the biological control of homopteran and lepidopteran pests. N Zeal J Ecol 30:61–72
Minckley WL, Deacon JE (1968) Southwestern fishes and the enigma of ‘endangered species’. Science 159:1424–1432
Moeed A, Hickson R, Barratt BIP (2006) Principles of environmental risk assessment with emphasis on the New Zealand perspective. In: Bigler F, Babendreier D, Kuhlmann U (eds) Environmental impact of invertebrates for biological control of arthropods. CABI Publishing, Oxon, pp 241–253
Murdoch WW, Chesson J, Chesson PL (1985) Biological control in theory and practice. Am Nat 125:344–366
Naranjo SE, Ellsworth PC, Frisvold GB (2015) Economic value of biological control in integrated pest management of managed plant systems. Annu Rev Entomol 60:621–645
Neuenschwander P (2001) Biological control of the cassava mealybug in Africa: a review. Biol Control 21:214–229
Paynter QE, Fowler SV, Gourlay AH, Haines ML, Harman HM, Hona SR, Peterson PG, Smith LA, Wilson-Davey JRA, Winks CJ, Withers TM (2004) Safety in New Zealand weed biocontrol: a nationwide survey for impacts on non-target plants. New Zeal Plant Prot 57:102–197
Pearson DE, Callaway RM (2003) Indirect effects of host-specific biological control agents. Trends Ecol Evol 18:456–461
Pearson DE, Callaway RM (2006) Biological control agents elevate hantavirus by subsidizing deer mouse populations. Ecol Lett 9:443–450
Pemberton RW (2000) Predictable risks to native plants in weed biological control. Oecologia 125:489–494
Rose KE, Louda SM, Rees M (2005) Demographic and evolutionary impacts of native and invasive insect herbivores on Cirsium canescens. Ecology 86:453–465
Roy HE, Adriaens T, Isaac NJB, Kenis M, Onkelinx T, San Martin G, Brown PMJ, Hautier L, Poland R, Roy DB, Comont R, Eschen R, Frost R, Zindel R, van Vlaenderen J, Nedved O, Ravn HP, Gregoire J-C, de Biseau J-C, Maes D (2012) Invasive alien predator causes rapid declines of native European ladybirds. Divers Distr 18:717–725
Seaman GA, Randall JE (1962) The mongoose as a predator in the Virgin Islands. J Mammol 43:544–546
Sheppard AW, Hill R, DeClerck-Floate RA, McClay A, Olckers T, Quimby PCJ, Zimmermann HG (2003) A global review of risk-benefit-cost analysis for the introduction of classical biological control agents against weeds: a crisis in the making? Biocontrol News Info 24:91N–108N
Simberloff D, Stiling P (1996) How risky is biological control? Ecology 77:1965–1974
Stephens AE, Srivastava DS, Myers JH (2013) Strength in numbers? Effects of multiple natural enemy species on plant performance. Proc R Soc London B 280:20122756
Stiling P (1990) Calculating the establishment rates of parasitoids in classical biological control. Am Entomol 1990(Fall):225–230
Stiling P (1993) Why do natural enemies fail in classical biological control programs? Am Entomol 39:31–37
Stiling P, Moon D, Gordon D (2004) Endangered cactus restoration: mitigating the non-target effects of a biological control agent (Cactoblastis cactorum) in Florida. Restor Ecol 12:605–610
Story JM, Smith L, Corn JG, White LJ (2008) Influence of seed head-attacking biological control agents on spotted knapweed reproductive potential in western Montana over a 30-year period. Environ Entomol 37:510–519
Suckling DM (2013) Benefits from biological control of weeds in New Zealand range from negligible to massive: a retrospective analysis. Biol Control 66:27–32
Suckling DM, Sforza RF (2014) What magnitude are observed non-target impacts from weed biocontrol? PLoS ONE 9(1):e84847
Symondson WOC, Sunderland KD, Greenstone MH (2002) Can generalist predators be effective biological control agents? Annu Rev Entomol 47:561–594
Tipping PW, Martin MR, Nimmo KR, Pierce RM, Smart MD, White EB, Madeira PT (2009) Invasion of a West Everglades wetland by Melaleuca quinquenervia countered by classical biological control. Biol Control 48:73–78
Urban MC, Phillips BL, Skelly DK, Shine R (2007) The cane toad’s (Chaunus [Bufo] marinus) increasing ability to invade Australia is revealed by a dynamically updated range model. Proc R Soc London B 274:1413–1419
van Driesche RG, Hoddle M (1997) Should arthropod parasitoids and predators be subject to host range testing when used as biological control agents? Agric Hum Val 14:211–226
van Driesche R, Reardon R (2004) Assessing host ranges for parasitoids and predators used for classical biological control: a guide to best practice. FHTET, USDA Forest Service, Morgantown
van Driesche RG, Carruthers RI, Center T, Hoddle MS, Hough-Goldstein J, Morin L, Smith L, Wagner DL, Blossey B, Brancatini V, Casagrande R, Causton CE, Coetzee JA, Cuda J, Ding J, Fowler SV, Frank JH, Fuester R, Goolsby J, Grodowitz M, Heard TA, Hill MP, Hoffmann JH, Huber J, Julien M, Kairo MTK, Kenis M, Mason P, Medal J, Messing R, Miller R, Moore A, Neuenschwander P, Newman R, Norambuena H, Palmer WA, Pemberton R, Panduro AP, Pratt PD, Rayamajhi M, Salom S, Sands D, Schooler S, Schwarzlander M, Sheppard A, Shaw R, Tipping PW, van Klinken RD (2010) Classical biological control for the protection of natural ecosystems. Biol Control 54:S2–S33
van Driesche R, Simberloff D, Blossey B, Causton C, Hoddle M, Marks C, Heinz K, Wagner D, Warner K (2016) Integrating biological control into conservation practice. Wiley, Oxford
van Klinken RD, Edwards OR (2002) Is host-specificity of weed biological control agents likely to evolve rapidly following establishment? Ecol Lett 5:590–596
van Lenteren JC, Babendreier D, Bigler F, Burgio G, Hokkanen HMT, Kuske S, Loomans AJM, Menzler-Hokkanen I, van Rijn PCJ, Thomas MB, Tommasini MG, Zeng QQ (2003) Environmental risk assessment of exotic natural enemies used in inundative biological control. BioControl 48:3–38
van Lenteren JC, Bale J, Bigler F, Hokkanen HMT (2006) Assessing risks of releasing exotic biological control agents of arthropod pests. Annu Rev Entomol 51:609–634
van Wilgen BW, Moran VC, Hoffmann JH (2013) Some perspectives on the risks and benefits of biological control of invasive alien plants in the management of natural ecosystems. Environ Manag 52:531–540
Wajnberg E, Scott JK, Quimby PC (2001) Evaluating indirect ecological effects of biological control. CABI Press, Wallingford
Wapshere AJ (1974) A strategy for evaluating the safety of organisms for biological weed control. Ann Appl Biol 77:201–211
Wiggering H, Dalchow C, Glemnitz M, Helming K, Muller K, Schultz A, Stachow U, Zander P (2006) Indicators for multifunctional land use—Linking socio-economic requirements with landscape potentials. Ecolog Indicat 6:238–249
Winston RL, Schwartzlander M, Hinz H, Day MD, Cock MJW, Julien MH (2014) Biological control of weeds: a world catalogue of agents and their target weeds, 5th edn. USDA Forest Service, Forest Heath Technology Enterprise Team, Morgantown
Wright MG, Hoffmann MP, Kuhar TP, Gardner J, Pitcher SA (2005) Evaluating risks of biological control introductions: a probabilistic risk-assessment approach. Biol Control 35:338–347
Acknowledgements
We thank Jacques Brodeur and Russell Messing for the invitation to contribute a submission to this Special Issue, and IOBC for supporting the conference where these ideas were originally discussed. For discussion of ideas presented in the paper we thank Joe Kaser, Rob Venette, Anne Kapuscinksi, Peter Mason and Frances Homans. We also thank Russell Messing and two anonymous reviewers for useful comments on a previous version of this article and Jacqueline Nuzzo for help with formatting Fig. 1.
Author information
Authors and Affiliations
Corresponding author
Additional information
Handling Editor: Russell Messing.
Rights and permissions
About this article
Cite this article
Heimpel, G.E., Cock, M.J.W. Shifting paradigms in the history of classical biological control. BioControl 63, 27–37 (2018). https://doi.org/10.1007/s10526-017-9841-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10526-017-9841-9