Skip to main content
Log in

Shifting paradigms in the history of classical biological control

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

Classical biological control using insects has led to the partial or complete control of at least 226 invasive insect and 57 invasive weed species worldwide since 1888. However, at least ten introductions of biological control agents have led to unintended negative consequences and these cases have led to a focus on risk that came to dominate the science and practice of classical biological control by the 1990s. Based upon historical developments in the field we consider that the era of focus on benefits began in 1888 and that it was supplanted by an era in which the focus was on risks during the 1990s. This paradigm shift greatly improved the safety of biological control releases but also led to a decline in the number of introductions, probably resulting in opportunity costs. We note here the development of a third paradigm: one in which the benefits and risks of biological control are clearly and explicitly balanced so that decisions can be made that maximize benefits while minimizing risks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andraca-Gomez G, Ordano M, Boege K, Dominguez CA, Pinero D, Perez-Ishiwara R, Perez-Camacho J, Canizares M, Fornoni J (2015) A potential invasion route of Cactoblastis cactorum within the Caribbean region matches historical hurricane trajectories. Biol Invasions 17:1397–1406

    Article  Google Scholar 

  • Barratt BIP, Moeed A (2005) Environmental safety of biological control: policy and practice in New Zealand. Biol Control 35:247–252

  • Beddington JR, Free CA, Lawton JH (1978) Characteristics of successful natural enemies in models of biological control of insect pests. Nature 273:513–519

    Article  CAS  PubMed  Google Scholar 

  • Benson J, van Driesche RG, Pasquale A, Elkinton J (2003) Introduced braconid parasitoids and range reduction of a native butterfly in New England. Biol Control 28:197–213

    Article  Google Scholar 

  • Bigler F, Kölliker-Ott UM (2006) Balancing environmental risks and benefits: a basic approach. In: Bigler F, Babendreier D, Kuhlmann U (eds) Environmental impact of invertebrates for biological control of arthropods. CABI Publishing, Oxon, pp 273–286

    Chapter  Google Scholar 

  • Bigler F, Babendreier D, Kuhlmann U (2006) Environmental impact of invertebrates for biological control of arthropods: methods and risk assessment. CABI Publising, Oxon

  • Blower SM, Koelle K, Kirschner DE, Mills J (2001) Live attenuated HIV vaccines: predicting the tradeoff between efficacy and safety. Proc Natl Acad Sci USA 98:3618–3623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boettner GH, Elkinton JS, Boettner CJ (2000) Effects of a biological control introduction on three nontarget native species of saturniid moths. Conserv Biol 14:1798–1806

    Article  Google Scholar 

  • Caltagirone LE, Doutt RL (1989) The history of the vedalia beetle importation to California and its impact on the development of biological control. Annu Rev Entomol 34:1–16

    Article  Google Scholar 

  • Carvalheiro LG, Buckley YM, Ventim R, Fowler SV, Memmott J (2008) Apparent competition can compromise the safety of highly specific biological control agents. Ecol Lett 11:690–700

    Article  PubMed  Google Scholar 

  • Civeyrel L, Simberloff D (1996) A tale of two snails: is the cure worse than the disease? Biodivers Conserv 5:1231–1252

    Article  Google Scholar 

  • Cock MJW, Day RK, Hinz H, Pollard KM, Thomas SE, Williams FE, Witt ABR, Shaw RH (2015) The impacts of some classical biological control successes. CAB Rev 10:1–57

    Google Scholar 

  • Cock MJW, Murphy ST, Kairo MTK, Thompson E, Murphy RJ, Francis AW (2016) Trends in the classical biological control of insect pests by insects: an update of the BIOCAT database. BioControl 61:349–363

    Article  CAS  Google Scholar 

  • Coll M, Guershon M (2002) Omnivory in terrestrial arthropods: mixing plant and prey diets. Annu Rev Entomol 47:267–298

    Article  CAS  PubMed  Google Scholar 

  • Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeen S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260

    Article  CAS  Google Scholar 

  • Crawley MJ (1989) The successes and failures of weed biocontrol using insects. Biocontrol News Info 10:213–223

    Google Scholar 

  • Culliney TW (2005) Benefits of classical biological control for managing invasive plants. Crit Rev Pl Sci 24:131–150

    Article  Google Scholar 

  • De Clercq P, Mason PG, Babendreier D (2011) Benefits and risks of exotic biological control agents. BioControl 56:681–698

    Article  Google Scholar 

  • Denoth M, Frid L, Myers JH (2002) Multiple agents in biological control: improving the odds? Biol Control 24:20–30

    Article  Google Scholar 

  • Ehlers R-U (2011) Regulation of biological control agents and the EU policy support action REBECA. In: Ehlers R-U (ed) Regulation of biological control agents. Springer, Dordrecht, pp 2–23

    Chapter  Google Scholar 

  • Esler KJ, van Wilgen BW, te Roller K, Wood AR, van der Merwe JH (2010) A landscape-level assessment of the long-term integrated control of an invasive shrub in South Africa. Biol Invasions 12:211–218

    Article  Google Scholar 

  • Evans EW (2004) Habitat displacement of North American ladybirds by an introduced species. Ecology 85:637–647

    Article  Google Scholar 

  • Follett PA, Duan JJ (2000) Nontarget effects of biological control. Kluwer Academic Publishers, Norwell

  • Greathead DJ, Greathead AH (1992) Biological control of insects pests by insect parasitoids and predators: the BIOCAT database. Biocontrol News Inf 13:61N–67N

  • Gurr GM, Wratten SD (2000) Biological control: measures of success. Kluwer, Dordrecht

  • Gutierrez AP, Caltagirone LE, Meikle W (1999) Evaluation of results, economics of biological control. In: Bellows TS, Fisher TW (eds) Handbook of biological control. Academic, San Diego, pp 243–252

    Chapter  Google Scholar 

  • Hajek AE, McManus ML, Junior ID (2005) Catalogue of introductions of pathogens and nematodes for classical biological control of insects and mites. USDA Forest Service, Forest Health Technology Enterprise Team, Morgantown

    Google Scholar 

  • Hajek AE, McManus DP, Delalibera I Jr (2007) A review of introductions of pathogens and nematodes for classical biological control of insects and mites. Biol Control 41:1–13

    Article  Google Scholar 

  • Hall RW, Ehler LE (1979) Rate of establishment of natural enemies in classical biological control. Bull Entomol Soc Am 25:280–282

    Google Scholar 

  • Hall RW, Ehler LE, Bisabri-Ershadi B (1980) Rate of success in classical biological control of arthropods. Bull Entomol Soc Am 26:111–114

    Google Scholar 

  • Harmon JP, Stephens E, Losey J (2007) The decline of native coccinellids (Coleoptera: Coccinellidae) in the United States and Canada. J Ins Cons 11:85–94

    Article  Google Scholar 

  • Harrison L, Moeed A, Sheppard A (2005) Regulation of the release of biological control agents of arthropods in New Zealand and Australia. In: Hoddle M (ed) International symposium on biological control of arthropods. US Forest Service, Davos, pp 715–725

    Google Scholar 

  • Hawkins BA, Cornell HV (1994) Maximum parasitism rates and successful biological control. Science 266:1886

    Article  CAS  PubMed  Google Scholar 

  • Heimpel GE, Mills NJ (2017) Biological control: ecology and applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Heimpel GE, Yang Y, Hill J, Ragsdale DW (2013) Environmental consequences of invasive species: greenhouse gas emissions of insecticide use and the role of biological control in reducing emissions. PLoS ONE 8(8):e72293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hennemann ML, Memmott J (2001) Infiltration of a Hawaiian community by introduced biological control agents. Science 293:1314–1316

    Article  Google Scholar 

  • Hill R, Campbell D, Hayes L, Corin S, Fowler S (2013) Why the New Zealand regulatory system for introducing new biological control agents works. In: XIII International Symposium on Biological Control of Weeds, vol 2011. Waikoloa, Hawaii, USA, pp 75–83

  • Hinz H, Schwartzlander M, Gassmann A, Bourchier RS (2014) Successes we may not have had: a retrospective analysis of selected weed biological control agents in the United States. Inv Plant Sci Manag 7:565–579

    Article  Google Scholar 

  • Hoddle MS, Crespo Ramirez C, Hoddle CD, Loayza J, Lincango PM, van Driesche RG, Causton CE (2013) Post release evaluation of Rodolia cardinalis (Coleoptera: Coccinellidae) for control of Icerya purchasi (Hemiptera: Monophlebidae) in the Galapagos Islands. Biol Control 67:262–274

    Article  Google Scholar 

  • Holt RD, Hochberg ME (2001) Indirect interactions: community modules and biological control: a theoretical perspective. In: Wajnberg E, Scott JK, Quimby PC (eds) Evaluating indirect ecological effects of biological control. CABI Press, Oxon, pp 13–38

    Google Scholar 

  • Howarth FG (1991) Environmental impacts of classical biological control. Annu Rev Entomol 36:485–509

    Article  Google Scholar 

  • Hunt EJ, Kuhlmann U, Sheppard A, Qin T-K, Barratt BIP, Harrison L, Mason PG, Parker D, Flanders RV, Goolsby J (2008) Review of invertebrate biological control agent regulation in Australia, New Zealand, Canada and the USA: recommendations for a harmonized European system. J Appl Entomol 132:89–123

    Article  Google Scholar 

  • Kaser JM, Heimpel GE (2015) Linking risk and efficacy in biological control host-parasitoid models. Biol Control 90:49–60

    Article  Google Scholar 

  • Kaser JM, Ode PJ (2016) Hidden risks and benefits of natural enemy mediated indirect effects. Curr Opin Ins Sci 14:105–111

    Article  Google Scholar 

  • Kimberling DN (2004) Lessons from history: predicting successes and risks of intentional introductions for arthropod biological control. Biol Invasion 6:301–318

    Article  Google Scholar 

  • Lane SD, Mills NJ, Getz WM (1999) The effects of parasitoid fecundity and host taxon on the biological control of insect pests: the relationship between theory and data. Ecol Ent 24:181–190

    Article  Google Scholar 

  • Lazo-Langer JA, Rodger MA, Barrowman NJ, Ramsay T, Wells PS, Coyle DA (2012) Comparing multiple competing interventions in the absence of randomized trials using clinical risk-benefit analysis. BMC Med Res Meth 12:3

    Article  Google Scholar 

  • Losey JE, Vaughan M (2006) The economic value of ecological services provided by insects. BioScience 56:311–323

    Article  Google Scholar 

  • Louda SM, O’Brien CW (2002) Unexpected ecological effects of distributing the exotic weevil, Larinus planus (F.), for the biological control of Canada thistle. Cons Biol 16:717–727

    Article  Google Scholar 

  • Louda SM, Kendall D, Connor J, Simberloff D (1997) Ecological effects of an insect introduced for the biological control of weeds. Science 277:1088–1090

    Article  CAS  Google Scholar 

  • Louda SM, Pemberton RW, Johnson MT, Follett PA (2003) Nontarget effects-the Achilles’ heel of biological control? Annu Rev Entomol 48:365–396

    Article  CAS  PubMed  Google Scholar 

  • Luck RF (1990) Evaluation of natural enemies for biological control: a behavioral approach. Trends Ecol Evol 5:196–199

    Article  Google Scholar 

  • Lundgren JG (2009) Relationships of natural enemies and non-prey foods. Springer, Dordrecht

    Google Scholar 

  • Maron M, Cockfield G (2008) Managing trade-offs in landscape restoration and revegetation projects. Ecol Appl 18:2041–2049

    Article  PubMed  Google Scholar 

  • McBride MF, Wilson KA, Burger J, Fang YC, Lulow M, Olson D, O’Connell M, Possingham HP (2010) Mathematical problem definition for ecological restoration planning. Ecol Modell 221:2243–2250

    Article  Google Scholar 

  • McEvoy PB, Coombs EV (2000) Why things bite back: unintended consequences of biological weed control. In: Follett PA, Duan JJ (eds) Nontarget effects of biological control. Kluwer, Dordrecht, pp 167–194

    Chapter  Google Scholar 

  • Messing RH, Wright MG (2006) Biological control of invasive species: solution or pollution? Front Ecol Environ 4:132–140

    Article  Google Scholar 

  • Mills NJ (2006) Accounting for differential success in the biological control of homopteran and lepidopteran pests. N Zeal J Ecol 30:61–72

    Google Scholar 

  • Minckley WL, Deacon JE (1968) Southwestern fishes and the enigma of ‘endangered species’. Science 159:1424–1432

    Article  CAS  PubMed  Google Scholar 

  • Moeed A, Hickson R, Barratt BIP (2006) Principles of environmental risk assessment with emphasis on the New Zealand perspective. In: Bigler F, Babendreier D, Kuhlmann U (eds) Environmental impact of invertebrates for biological control of arthropods. CABI Publishing, Oxon, pp 241–253

    Google Scholar 

  • Murdoch WW, Chesson J, Chesson PL (1985) Biological control in theory and practice. Am Nat 125:344–366

    Article  Google Scholar 

  • Naranjo SE, Ellsworth PC, Frisvold GB (2015) Economic value of biological control in integrated pest management of managed plant systems. Annu Rev Entomol 60:621–645

    Article  CAS  PubMed  Google Scholar 

  • Neuenschwander P (2001) Biological control of the cassava mealybug in Africa: a review. Biol Control 21:214–229

    Article  Google Scholar 

  • Paynter QE, Fowler SV, Gourlay AH, Haines ML, Harman HM, Hona SR, Peterson PG, Smith LA, Wilson-Davey JRA, Winks CJ, Withers TM (2004) Safety in New Zealand weed biocontrol: a nationwide survey for impacts on non-target plants. New Zeal Plant Prot 57:102–197

    Google Scholar 

  • Pearson DE, Callaway RM (2003) Indirect effects of host-specific biological control agents. Trends Ecol Evol 18:456–461

    Article  Google Scholar 

  • Pearson DE, Callaway RM (2006) Biological control agents elevate hantavirus by subsidizing deer mouse populations. Ecol Lett 9:443–450

    Article  PubMed  Google Scholar 

  • Pemberton RW (2000) Predictable risks to native plants in weed biological control. Oecologia 125:489–494

    Article  PubMed  Google Scholar 

  • Rose KE, Louda SM, Rees M (2005) Demographic and evolutionary impacts of native and invasive insect herbivores on Cirsium canescens. Ecology 86:453–465

    Article  Google Scholar 

  • Roy HE, Adriaens T, Isaac NJB, Kenis M, Onkelinx T, San Martin G, Brown PMJ, Hautier L, Poland R, Roy DB, Comont R, Eschen R, Frost R, Zindel R, van Vlaenderen J, Nedved O, Ravn HP, Gregoire J-C, de Biseau J-C, Maes D (2012) Invasive alien predator causes rapid declines of native European ladybirds. Divers Distr 18:717–725

    Article  Google Scholar 

  • Seaman GA, Randall JE (1962) The mongoose as a predator in the Virgin Islands. J Mammol 43:544–546

    Article  Google Scholar 

  • Sheppard AW, Hill R, DeClerck-Floate RA, McClay A, Olckers T, Quimby PCJ, Zimmermann HG (2003) A global review of risk-benefit-cost analysis for the introduction of classical biological control agents against weeds: a crisis in the making? Biocontrol News Info 24:91N–108N

    Google Scholar 

  • Simberloff D, Stiling P (1996) How risky is biological control? Ecology 77:1965–1974

    Article  Google Scholar 

  • Stephens AE, Srivastava DS, Myers JH (2013) Strength in numbers? Effects of multiple natural enemy species on plant performance. Proc R Soc London B 280:20122756

    Article  Google Scholar 

  • Stiling P (1990) Calculating the establishment rates of parasitoids in classical biological control. Am Entomol 1990(Fall):225–230

    Article  Google Scholar 

  • Stiling P (1993) Why do natural enemies fail in classical biological control programs? Am Entomol 39:31–37

    Article  Google Scholar 

  • Stiling P, Moon D, Gordon D (2004) Endangered cactus restoration: mitigating the non-target effects of a biological control agent (Cactoblastis cactorum) in Florida. Restor Ecol 12:605–610

    Article  Google Scholar 

  • Story JM, Smith L, Corn JG, White LJ (2008) Influence of seed head-attacking biological control agents on spotted knapweed reproductive potential in western Montana over a 30-year period. Environ Entomol 37:510–519

    Article  PubMed  Google Scholar 

  • Suckling DM (2013) Benefits from biological control of weeds in New Zealand range from negligible to massive: a retrospective analysis. Biol Control 66:27–32

    Article  Google Scholar 

  • Suckling DM, Sforza RF (2014) What magnitude are observed non-target impacts from weed biocontrol? PLoS ONE 9(1):e84847

    Article  PubMed  PubMed Central  Google Scholar 

  • Symondson WOC, Sunderland KD, Greenstone MH (2002) Can generalist predators be effective biological control agents? Annu Rev Entomol 47:561–594

    Article  CAS  PubMed  Google Scholar 

  • Tipping PW, Martin MR, Nimmo KR, Pierce RM, Smart MD, White EB, Madeira PT (2009) Invasion of a West Everglades wetland by Melaleuca quinquenervia countered by classical biological control. Biol Control 48:73–78

    Article  Google Scholar 

  • Urban MC, Phillips BL, Skelly DK, Shine R (2007) The cane toad’s (Chaunus [Bufo] marinus) increasing ability to invade Australia is revealed by a dynamically updated range model. Proc R Soc London B 274:1413–1419

    Article  Google Scholar 

  • van Driesche RG, Hoddle M (1997) Should arthropod parasitoids and predators be subject to host range testing when used as biological control agents? Agric Hum Val 14:211–226

    Article  Google Scholar 

  • van Driesche R, Reardon R (2004) Assessing host ranges for parasitoids and predators used for classical biological control: a guide to best practice. FHTET, USDA Forest Service, Morgantown

  • van Driesche RG, Carruthers RI, Center T, Hoddle MS, Hough-Goldstein J, Morin L, Smith L, Wagner DL, Blossey B, Brancatini V, Casagrande R, Causton CE, Coetzee JA, Cuda J, Ding J, Fowler SV, Frank JH, Fuester R, Goolsby J, Grodowitz M, Heard TA, Hill MP, Hoffmann JH, Huber J, Julien M, Kairo MTK, Kenis M, Mason P, Medal J, Messing R, Miller R, Moore A, Neuenschwander P, Newman R, Norambuena H, Palmer WA, Pemberton R, Panduro AP, Pratt PD, Rayamajhi M, Salom S, Sands D, Schooler S, Schwarzlander M, Sheppard A, Shaw R, Tipping PW, van Klinken RD (2010) Classical biological control for the protection of natural ecosystems. Biol Control 54:S2–S33

    Article  Google Scholar 

  • van Driesche R, Simberloff D, Blossey B, Causton C, Hoddle M, Marks C, Heinz K, Wagner D, Warner K (2016) Integrating biological control into conservation practice. Wiley, Oxford

  • van Klinken RD, Edwards OR (2002) Is host-specificity of weed biological control agents likely to evolve rapidly following establishment? Ecol Lett 5:590–596

    Article  Google Scholar 

  • van Lenteren JC, Babendreier D, Bigler F, Burgio G, Hokkanen HMT, Kuske S, Loomans AJM, Menzler-Hokkanen I, van Rijn PCJ, Thomas MB, Tommasini MG, Zeng QQ (2003) Environmental risk assessment of exotic natural enemies used in inundative biological control. BioControl 48:3–38

    Article  Google Scholar 

  • van Lenteren JC, Bale J, Bigler F, Hokkanen HMT (2006) Assessing risks of releasing exotic biological control agents of arthropod pests. Annu Rev Entomol 51:609–634

    Article  PubMed  Google Scholar 

  • van Wilgen BW, Moran VC, Hoffmann JH (2013) Some perspectives on the risks and benefits of biological control of invasive alien plants in the management of natural ecosystems. Environ Manag 52:531–540

    Article  Google Scholar 

  • Wajnberg E, Scott JK, Quimby PC (2001) Evaluating indirect ecological effects of biological control. CABI Press, Wallingford

  • Wapshere AJ (1974) A strategy for evaluating the safety of organisms for biological weed control. Ann Appl Biol 77:201–211

    Article  Google Scholar 

  • Wiggering H, Dalchow C, Glemnitz M, Helming K, Muller K, Schultz A, Stachow U, Zander P (2006) Indicators for multifunctional land use—Linking socio-economic requirements with landscape potentials. Ecolog Indicat 6:238–249

    Article  Google Scholar 

  • Winston RL, Schwartzlander M, Hinz H, Day MD, Cock MJW, Julien MH (2014) Biological control of weeds: a world catalogue of agents and their target weeds, 5th edn. USDA Forest Service, Forest Heath Technology Enterprise Team, Morgantown

  • Wright MG, Hoffmann MP, Kuhar TP, Gardner J, Pitcher SA (2005) Evaluating risks of biological control introductions: a probabilistic risk-assessment approach. Biol Control 35:338–347

    Article  Google Scholar 

Download references

Acknowledgements

We thank Jacques Brodeur and Russell Messing for the invitation to contribute a submission to this Special Issue, and IOBC for supporting the conference where these ideas were originally discussed. For discussion of ideas presented in the paper we thank Joe Kaser, Rob Venette, Anne Kapuscinksi, Peter Mason and Frances Homans. We also thank Russell Messing and two anonymous reviewers for useful comments on a previous version of this article and Jacqueline Nuzzo for help with formatting Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George E. Heimpel.

Additional information

Handling Editor: Russell Messing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heimpel, G.E., Cock, M.J.W. Shifting paradigms in the history of classical biological control. BioControl 63, 27–37 (2018). https://doi.org/10.1007/s10526-017-9841-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-017-9841-9

Keywords

Navigation