, Volume 63, Issue 1, pp 27–37 | Cite as

Shifting paradigms in the history of classical biological control

  • George E. HeimpelEmail author
  • Matthew J. W. Cock


Classical biological control using insects has led to the partial or complete control of at least 226 invasive insect and 57 invasive weed species worldwide since 1888. However, at least ten introductions of biological control agents have led to unintended negative consequences and these cases have led to a focus on risk that came to dominate the science and practice of classical biological control by the 1990s. Based upon historical developments in the field we consider that the era of focus on benefits began in 1888 and that it was supplanted by an era in which the focus was on risks during the 1990s. This paradigm shift greatly improved the safety of biological control releases but also led to a decline in the number of introductions, probably resulting in opportunity costs. We note here the development of a third paradigm: one in which the benefits and risks of biological control are clearly and explicitly balanced so that decisions can be made that maximize benefits while minimizing risks.


Classical biological control Risk assessment Insect control Weed control Benefit 



We thank Jacques Brodeur and Russell Messing for the invitation to contribute a submission to this Special Issue, and IOBC for supporting the conference where these ideas were originally discussed. For discussion of ideas presented in the paper we thank Joe Kaser, Rob Venette, Anne Kapuscinksi, Peter Mason and Frances Homans. We also thank Russell Messing and two anonymous reviewers for useful comments on a previous version of this article and Jacqueline Nuzzo for help with formatting Fig. 1.


  1. Andraca-Gomez G, Ordano M, Boege K, Dominguez CA, Pinero D, Perez-Ishiwara R, Perez-Camacho J, Canizares M, Fornoni J (2015) A potential invasion route of Cactoblastis cactorum within the Caribbean region matches historical hurricane trajectories. Biol Invasions 17:1397–1406CrossRefGoogle Scholar
  2. Barratt BIP, Moeed A (2005) Environmental safety of biological control: policy and practice in New Zealand. Biol Control 35:247–252Google Scholar
  3. Beddington JR, Free CA, Lawton JH (1978) Characteristics of successful natural enemies in models of biological control of insect pests. Nature 273:513–519CrossRefPubMedGoogle Scholar
  4. Benson J, van Driesche RG, Pasquale A, Elkinton J (2003) Introduced braconid parasitoids and range reduction of a native butterfly in New England. Biol Control 28:197–213CrossRefGoogle Scholar
  5. Bigler F, Kölliker-Ott UM (2006) Balancing environmental risks and benefits: a basic approach. In: Bigler F, Babendreier D, Kuhlmann U (eds) Environmental impact of invertebrates for biological control of arthropods. CABI Publishing, Oxon, pp 273–286CrossRefGoogle Scholar
  6. Bigler F, Babendreier D, Kuhlmann U (2006) Environmental impact of invertebrates for biological control of arthropods: methods and risk assessment. CABI Publising, OxonGoogle Scholar
  7. Blower SM, Koelle K, Kirschner DE, Mills J (2001) Live attenuated HIV vaccines: predicting the tradeoff between efficacy and safety. Proc Natl Acad Sci USA 98:3618–3623CrossRefPubMedPubMedCentralGoogle Scholar
  8. Boettner GH, Elkinton JS, Boettner CJ (2000) Effects of a biological control introduction on three nontarget native species of saturniid moths. Conserv Biol 14:1798–1806CrossRefGoogle Scholar
  9. Caltagirone LE, Doutt RL (1989) The history of the vedalia beetle importation to California and its impact on the development of biological control. Annu Rev Entomol 34:1–16CrossRefGoogle Scholar
  10. Carvalheiro LG, Buckley YM, Ventim R, Fowler SV, Memmott J (2008) Apparent competition can compromise the safety of highly specific biological control agents. Ecol Lett 11:690–700CrossRefPubMedGoogle Scholar
  11. Civeyrel L, Simberloff D (1996) A tale of two snails: is the cure worse than the disease? Biodivers Conserv 5:1231–1252CrossRefGoogle Scholar
  12. Cock MJW, Day RK, Hinz H, Pollard KM, Thomas SE, Williams FE, Witt ABR, Shaw RH (2015) The impacts of some classical biological control successes. CAB Rev 10:1–57Google Scholar
  13. Cock MJW, Murphy ST, Kairo MTK, Thompson E, Murphy RJ, Francis AW (2016) Trends in the classical biological control of insect pests by insects: an update of the BIOCAT database. BioControl 61:349–363CrossRefGoogle Scholar
  14. Coll M, Guershon M (2002) Omnivory in terrestrial arthropods: mixing plant and prey diets. Annu Rev Entomol 47:267–298CrossRefPubMedGoogle Scholar
  15. Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeen S, O’Neill RV, Paruelo J, Raskin RG, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260CrossRefGoogle Scholar
  16. Crawley MJ (1989) The successes and failures of weed biocontrol using insects. Biocontrol News Info 10:213–223Google Scholar
  17. Culliney TW (2005) Benefits of classical biological control for managing invasive plants. Crit Rev Pl Sci 24:131–150CrossRefGoogle Scholar
  18. De Clercq P, Mason PG, Babendreier D (2011) Benefits and risks of exotic biological control agents. BioControl 56:681–698CrossRefGoogle Scholar
  19. Denoth M, Frid L, Myers JH (2002) Multiple agents in biological control: improving the odds? Biol Control 24:20–30CrossRefGoogle Scholar
  20. Ehlers R-U (2011) Regulation of biological control agents and the EU policy support action REBECA. In: Ehlers R-U (ed) Regulation of biological control agents. Springer, Dordrecht, pp 2–23CrossRefGoogle Scholar
  21. Esler KJ, van Wilgen BW, te Roller K, Wood AR, van der Merwe JH (2010) A landscape-level assessment of the long-term integrated control of an invasive shrub in South Africa. Biol Invasions 12:211–218CrossRefGoogle Scholar
  22. Evans EW (2004) Habitat displacement of North American ladybirds by an introduced species. Ecology 85:637–647CrossRefGoogle Scholar
  23. Follett PA, Duan JJ (2000) Nontarget effects of biological control. Kluwer Academic Publishers, NorwellGoogle Scholar
  24. Greathead DJ, Greathead AH (1992) Biological control of insects pests by insect parasitoids and predators: the BIOCAT database. Biocontrol News Inf 13:61N–67NGoogle Scholar
  25. Gurr GM, Wratten SD (2000) Biological control: measures of success. Kluwer, DordrechtGoogle Scholar
  26. Gutierrez AP, Caltagirone LE, Meikle W (1999) Evaluation of results, economics of biological control. In: Bellows TS, Fisher TW (eds) Handbook of biological control. Academic, San Diego, pp 243–252CrossRefGoogle Scholar
  27. Hajek AE, McManus ML, Junior ID (2005) Catalogue of introductions of pathogens and nematodes for classical biological control of insects and mites. USDA Forest Service, Forest Health Technology Enterprise Team, MorgantownGoogle Scholar
  28. Hajek AE, McManus DP, Delalibera I Jr (2007) A review of introductions of pathogens and nematodes for classical biological control of insects and mites. Biol Control 41:1–13CrossRefGoogle Scholar
  29. Hall RW, Ehler LE (1979) Rate of establishment of natural enemies in classical biological control. Bull Entomol Soc Am 25:280–282Google Scholar
  30. Hall RW, Ehler LE, Bisabri-Ershadi B (1980) Rate of success in classical biological control of arthropods. Bull Entomol Soc Am 26:111–114Google Scholar
  31. Harmon JP, Stephens E, Losey J (2007) The decline of native coccinellids (Coleoptera: Coccinellidae) in the United States and Canada. J Ins Cons 11:85–94CrossRefGoogle Scholar
  32. Harrison L, Moeed A, Sheppard A (2005) Regulation of the release of biological control agents of arthropods in New Zealand and Australia. In: Hoddle M (ed) International symposium on biological control of arthropods. US Forest Service, Davos, pp 715–725Google Scholar
  33. Hawkins BA, Cornell HV (1994) Maximum parasitism rates and successful biological control. Science 266:1886CrossRefPubMedGoogle Scholar
  34. Heimpel GE, Mills NJ (2017) Biological control: ecology and applications. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  35. Heimpel GE, Yang Y, Hill J, Ragsdale DW (2013) Environmental consequences of invasive species: greenhouse gas emissions of insecticide use and the role of biological control in reducing emissions. PLoS ONE 8(8):e72293CrossRefPubMedPubMedCentralGoogle Scholar
  36. Hennemann ML, Memmott J (2001) Infiltration of a Hawaiian community by introduced biological control agents. Science 293:1314–1316CrossRefGoogle Scholar
  37. Hill R, Campbell D, Hayes L, Corin S, Fowler S (2013) Why the New Zealand regulatory system for introducing new biological control agents works. In: XIII International Symposium on Biological Control of Weeds, vol 2011. Waikoloa, Hawaii, USA, pp 75–83Google Scholar
  38. Hinz H, Schwartzlander M, Gassmann A, Bourchier RS (2014) Successes we may not have had: a retrospective analysis of selected weed biological control agents in the United States. Inv Plant Sci Manag 7:565–579CrossRefGoogle Scholar
  39. Hoddle MS, Crespo Ramirez C, Hoddle CD, Loayza J, Lincango PM, van Driesche RG, Causton CE (2013) Post release evaluation of Rodolia cardinalis (Coleoptera: Coccinellidae) for control of Icerya purchasi (Hemiptera: Monophlebidae) in the Galapagos Islands. Biol Control 67:262–274CrossRefGoogle Scholar
  40. Holt RD, Hochberg ME (2001) Indirect interactions: community modules and biological control: a theoretical perspective. In: Wajnberg E, Scott JK, Quimby PC (eds) Evaluating indirect ecological effects of biological control. CABI Press, Oxon, pp 13–38Google Scholar
  41. Howarth FG (1991) Environmental impacts of classical biological control. Annu Rev Entomol 36:485–509CrossRefGoogle Scholar
  42. Hunt EJ, Kuhlmann U, Sheppard A, Qin T-K, Barratt BIP, Harrison L, Mason PG, Parker D, Flanders RV, Goolsby J (2008) Review of invertebrate biological control agent regulation in Australia, New Zealand, Canada and the USA: recommendations for a harmonized European system. J Appl Entomol 132:89–123CrossRefGoogle Scholar
  43. Kaser JM, Heimpel GE (2015) Linking risk and efficacy in biological control host-parasitoid models. Biol Control 90:49–60CrossRefGoogle Scholar
  44. Kaser JM, Ode PJ (2016) Hidden risks and benefits of natural enemy mediated indirect effects. Curr Opin Ins Sci 14:105–111CrossRefGoogle Scholar
  45. Kimberling DN (2004) Lessons from history: predicting successes and risks of intentional introductions for arthropod biological control. Biol Invasion 6:301–318CrossRefGoogle Scholar
  46. Lane SD, Mills NJ, Getz WM (1999) The effects of parasitoid fecundity and host taxon on the biological control of insect pests: the relationship between theory and data. Ecol Ent 24:181–190CrossRefGoogle Scholar
  47. Lazo-Langer JA, Rodger MA, Barrowman NJ, Ramsay T, Wells PS, Coyle DA (2012) Comparing multiple competing interventions in the absence of randomized trials using clinical risk-benefit analysis. BMC Med Res Meth 12:3CrossRefGoogle Scholar
  48. Losey JE, Vaughan M (2006) The economic value of ecological services provided by insects. BioScience 56:311–323CrossRefGoogle Scholar
  49. Louda SM, O’Brien CW (2002) Unexpected ecological effects of distributing the exotic weevil, Larinus planus (F.), for the biological control of Canada thistle. Cons Biol 16:717–727CrossRefGoogle Scholar
  50. Louda SM, Kendall D, Connor J, Simberloff D (1997) Ecological effects of an insect introduced for the biological control of weeds. Science 277:1088–1090CrossRefGoogle Scholar
  51. Louda SM, Pemberton RW, Johnson MT, Follett PA (2003) Nontarget effects-the Achilles’ heel of biological control? Annu Rev Entomol 48:365–396CrossRefPubMedGoogle Scholar
  52. Luck RF (1990) Evaluation of natural enemies for biological control: a behavioral approach. Trends Ecol Evol 5:196–199CrossRefGoogle Scholar
  53. Lundgren JG (2009) Relationships of natural enemies and non-prey foods. Springer, DordrechtGoogle Scholar
  54. Maron M, Cockfield G (2008) Managing trade-offs in landscape restoration and revegetation projects. Ecol Appl 18:2041–2049CrossRefPubMedGoogle Scholar
  55. McBride MF, Wilson KA, Burger J, Fang YC, Lulow M, Olson D, O’Connell M, Possingham HP (2010) Mathematical problem definition for ecological restoration planning. Ecol Modell 221:2243–2250CrossRefGoogle Scholar
  56. McEvoy PB, Coombs EV (2000) Why things bite back: unintended consequences of biological weed control. In: Follett PA, Duan JJ (eds) Nontarget effects of biological control. Kluwer, Dordrecht, pp 167–194CrossRefGoogle Scholar
  57. Messing RH, Wright MG (2006) Biological control of invasive species: solution or pollution? Front Ecol Environ 4:132–140CrossRefGoogle Scholar
  58. Mills NJ (2006) Accounting for differential success in the biological control of homopteran and lepidopteran pests. N Zeal J Ecol 30:61–72Google Scholar
  59. Minckley WL, Deacon JE (1968) Southwestern fishes and the enigma of ‘endangered species’. Science 159:1424–1432CrossRefPubMedGoogle Scholar
  60. Moeed A, Hickson R, Barratt BIP (2006) Principles of environmental risk assessment with emphasis on the New Zealand perspective. In: Bigler F, Babendreier D, Kuhlmann U (eds) Environmental impact of invertebrates for biological control of arthropods. CABI Publishing, Oxon, pp 241–253Google Scholar
  61. Murdoch WW, Chesson J, Chesson PL (1985) Biological control in theory and practice. Am Nat 125:344–366CrossRefGoogle Scholar
  62. Naranjo SE, Ellsworth PC, Frisvold GB (2015) Economic value of biological control in integrated pest management of managed plant systems. Annu Rev Entomol 60:621–645CrossRefPubMedGoogle Scholar
  63. Neuenschwander P (2001) Biological control of the cassava mealybug in Africa: a review. Biol Control 21:214–229CrossRefGoogle Scholar
  64. Paynter QE, Fowler SV, Gourlay AH, Haines ML, Harman HM, Hona SR, Peterson PG, Smith LA, Wilson-Davey JRA, Winks CJ, Withers TM (2004) Safety in New Zealand weed biocontrol: a nationwide survey for impacts on non-target plants. New Zeal Plant Prot 57:102–197Google Scholar
  65. Pearson DE, Callaway RM (2003) Indirect effects of host-specific biological control agents. Trends Ecol Evol 18:456–461CrossRefGoogle Scholar
  66. Pearson DE, Callaway RM (2006) Biological control agents elevate hantavirus by subsidizing deer mouse populations. Ecol Lett 9:443–450CrossRefPubMedGoogle Scholar
  67. Pemberton RW (2000) Predictable risks to native plants in weed biological control. Oecologia 125:489–494CrossRefPubMedGoogle Scholar
  68. Rose KE, Louda SM, Rees M (2005) Demographic and evolutionary impacts of native and invasive insect herbivores on Cirsium canescens. Ecology 86:453–465CrossRefGoogle Scholar
  69. Roy HE, Adriaens T, Isaac NJB, Kenis M, Onkelinx T, San Martin G, Brown PMJ, Hautier L, Poland R, Roy DB, Comont R, Eschen R, Frost R, Zindel R, van Vlaenderen J, Nedved O, Ravn HP, Gregoire J-C, de Biseau J-C, Maes D (2012) Invasive alien predator causes rapid declines of native European ladybirds. Divers Distr 18:717–725CrossRefGoogle Scholar
  70. Seaman GA, Randall JE (1962) The mongoose as a predator in the Virgin Islands. J Mammol 43:544–546CrossRefGoogle Scholar
  71. Sheppard AW, Hill R, DeClerck-Floate RA, McClay A, Olckers T, Quimby PCJ, Zimmermann HG (2003) A global review of risk-benefit-cost analysis for the introduction of classical biological control agents against weeds: a crisis in the making? Biocontrol News Info 24:91N–108NGoogle Scholar
  72. Simberloff D, Stiling P (1996) How risky is biological control? Ecology 77:1965–1974CrossRefGoogle Scholar
  73. Stephens AE, Srivastava DS, Myers JH (2013) Strength in numbers? Effects of multiple natural enemy species on plant performance. Proc R Soc London B 280:20122756CrossRefGoogle Scholar
  74. Stiling P (1990) Calculating the establishment rates of parasitoids in classical biological control. Am Entomol 1990(Fall):225–230CrossRefGoogle Scholar
  75. Stiling P (1993) Why do natural enemies fail in classical biological control programs? Am Entomol 39:31–37CrossRefGoogle Scholar
  76. Stiling P, Moon D, Gordon D (2004) Endangered cactus restoration: mitigating the non-target effects of a biological control agent (Cactoblastis cactorum) in Florida. Restor Ecol 12:605–610CrossRefGoogle Scholar
  77. Story JM, Smith L, Corn JG, White LJ (2008) Influence of seed head-attacking biological control agents on spotted knapweed reproductive potential in western Montana over a 30-year period. Environ Entomol 37:510–519CrossRefPubMedGoogle Scholar
  78. Suckling DM (2013) Benefits from biological control of weeds in New Zealand range from negligible to massive: a retrospective analysis. Biol Control 66:27–32CrossRefGoogle Scholar
  79. Suckling DM, Sforza RF (2014) What magnitude are observed non-target impacts from weed biocontrol? PLoS ONE 9(1):e84847CrossRefPubMedPubMedCentralGoogle Scholar
  80. Symondson WOC, Sunderland KD, Greenstone MH (2002) Can generalist predators be effective biological control agents? Annu Rev Entomol 47:561–594CrossRefPubMedGoogle Scholar
  81. Tipping PW, Martin MR, Nimmo KR, Pierce RM, Smart MD, White EB, Madeira PT (2009) Invasion of a West Everglades wetland by Melaleuca quinquenervia countered by classical biological control. Biol Control 48:73–78CrossRefGoogle Scholar
  82. Urban MC, Phillips BL, Skelly DK, Shine R (2007) The cane toad’s (Chaunus [Bufo] marinus) increasing ability to invade Australia is revealed by a dynamically updated range model. Proc R Soc London B 274:1413–1419CrossRefGoogle Scholar
  83. van Driesche RG, Hoddle M (1997) Should arthropod parasitoids and predators be subject to host range testing when used as biological control agents? Agric Hum Val 14:211–226CrossRefGoogle Scholar
  84. van Driesche R, Reardon R (2004) Assessing host ranges for parasitoids and predators used for classical biological control: a guide to best practice. FHTET, USDA Forest Service, MorgantownGoogle Scholar
  85. van Driesche RG, Carruthers RI, Center T, Hoddle MS, Hough-Goldstein J, Morin L, Smith L, Wagner DL, Blossey B, Brancatini V, Casagrande R, Causton CE, Coetzee JA, Cuda J, Ding J, Fowler SV, Frank JH, Fuester R, Goolsby J, Grodowitz M, Heard TA, Hill MP, Hoffmann JH, Huber J, Julien M, Kairo MTK, Kenis M, Mason P, Medal J, Messing R, Miller R, Moore A, Neuenschwander P, Newman R, Norambuena H, Palmer WA, Pemberton R, Panduro AP, Pratt PD, Rayamajhi M, Salom S, Sands D, Schooler S, Schwarzlander M, Sheppard A, Shaw R, Tipping PW, van Klinken RD (2010) Classical biological control for the protection of natural ecosystems. Biol Control 54:S2–S33CrossRefGoogle Scholar
  86. van Driesche R, Simberloff D, Blossey B, Causton C, Hoddle M, Marks C, Heinz K, Wagner D, Warner K (2016) Integrating biological control into conservation practice. Wiley, OxfordGoogle Scholar
  87. van Klinken RD, Edwards OR (2002) Is host-specificity of weed biological control agents likely to evolve rapidly following establishment? Ecol Lett 5:590–596CrossRefGoogle Scholar
  88. van Lenteren JC, Babendreier D, Bigler F, Burgio G, Hokkanen HMT, Kuske S, Loomans AJM, Menzler-Hokkanen I, van Rijn PCJ, Thomas MB, Tommasini MG, Zeng QQ (2003) Environmental risk assessment of exotic natural enemies used in inundative biological control. BioControl 48:3–38CrossRefGoogle Scholar
  89. van Lenteren JC, Bale J, Bigler F, Hokkanen HMT (2006) Assessing risks of releasing exotic biological control agents of arthropod pests. Annu Rev Entomol 51:609–634CrossRefPubMedGoogle Scholar
  90. van Wilgen BW, Moran VC, Hoffmann JH (2013) Some perspectives on the risks and benefits of biological control of invasive alien plants in the management of natural ecosystems. Environ Manag 52:531–540CrossRefGoogle Scholar
  91. Wajnberg E, Scott JK, Quimby PC (2001) Evaluating indirect ecological effects of biological control. CABI Press, WallingfordGoogle Scholar
  92. Wapshere AJ (1974) A strategy for evaluating the safety of organisms for biological weed control. Ann Appl Biol 77:201–211CrossRefGoogle Scholar
  93. Wiggering H, Dalchow C, Glemnitz M, Helming K, Muller K, Schultz A, Stachow U, Zander P (2006) Indicators for multifunctional land use—Linking socio-economic requirements with landscape potentials. Ecolog Indicat 6:238–249CrossRefGoogle Scholar
  94. Winston RL, Schwartzlander M, Hinz H, Day MD, Cock MJW, Julien MH (2014) Biological control of weeds: a world catalogue of agents and their target weeds, 5th edn. USDA Forest Service, Forest Heath Technology Enterprise Team, MorgantownGoogle Scholar
  95. Wright MG, Hoffmann MP, Kuhar TP, Gardner J, Pitcher SA (2005) Evaluating risks of biological control introductions: a probabilistic risk-assessment approach. Biol Control 35:338–347CrossRefGoogle Scholar

Copyright information

© International Organization for Biological Control (IOBC) 2017

Authors and Affiliations

  1. 1.Department of EntomologyUniversity of MinnesotaSt. PaulUSA
  2. 2.CABIEghamUK

Personalised recommendations