Advertisement

BioControl

, Volume 62, Issue 4, pp 545–555 | Cite as

Formulation of the biocontrol agent Bacillus amyloliquefaciens CPA-8 using different approaches: liquid, freeze-drying and fluid-bed spray-drying

  • A. Gotor-Vila
  • J. Usall
  • R. Torres
  • M. Abadias
  • N. TeixidóEmail author
Article

Abstract

The present work focuses on the assessment and comparison of three different formulation technologies and the effect of protectants on cell viability, storage stability and antagonistic activity of the biocontrol agent Bacillus amyloliquefaciens CPA-8. Cultures were concentrated with different protective substances such as MgSO4, sucrose and skimmed milk (SM) and subjected to liquid formulation, freeze-drying and fluid-bed spray-drying. Results showed that CPA-8 freeze-dried cells without protectants or amended with SM suffered the highest losses in cell viability (0.41−0.48 log). Moreover, the cell viability of the tested freeze-dried products decreased after four months of storage at both tested temperatures (4 and 22 °C). Otherwise, liquid and fluid-bed spray-dried products were stable for four months at 4 °C and for 12 months at 22, 4 and −20 °C, respectively, and no effect of the protectants was observed. The most suitable CPA-8 products were then tested against Monilinia laxa and M. fructicola in artificially wounded nectarines and in all cases the antagonistic activity was maintained similar to fresh cells. The efficacy results revealed that the formulation process did not affect the biocontrol potential of CPA-8. This work led us to conclude that effective formulations with final concentrations ranging from 1.93 × 109–2.98 × 109 CFU ml−1 and from 4.76 × 109–1.03 × 1010 CFU g−1 were obtained for liquid and dried products, respectively. Additionally, the suitability of the fluid-bed spray drying technology should be taken into account to develop a stable and effective CPA-8 product for practical applications to control brown rot in stone fruit.

Keywords

Bacillus spp. Protectants Shelf-life Monilinia spp. Biocontrol efficacy 

Notes

Acknowledgements

This research was supported by the European project BIOCOMES FP7-612713 and by the Secretaria d’Universitats i Recerca del Departament d’Economia i Coneixement de la Generalitat de Catalunya for the PhD Grant 2014-FI-B00367 (Amparo M. Gotor Vila). The authors also thank CERCA Program (Generalitat de Catalunya).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abadias M, Teixidó N, Usall J, Benabarre A, Viñas I (2001) Viability, efficacy, and storage stability of freeze-dried biocontrol agent Candida sake using different protective and rehydration media. J Food Prot 64: 856–861CrossRefPubMedGoogle Scholar
  2. Abadias M, Teixidó N, Usall J, Viñas I (2003) Optimization of growth conditions of the postharvest biocontrol agent Candida sake CPA in a lab-scale fermenter. J Appl Microbiol 95: 301–309CrossRefPubMedGoogle Scholar
  3. Abadias M, Teixidó N, Usall J, Solsona C, Viñas I (2005) Survival of the postharvest biocontrol yeast Candida sake CPA-1 after dehydration by spray-drying. Biocontrol Sci Technol 15: 835–846CrossRefGoogle Scholar
  4. Casals C, Teixidó N, Viñas I, Silvera E, Lamarca N, Usall J (2010) Combination of hot water, Bacillus subtilis CPA-8 and sodium bicarbonate treatments to control postharvest brown rot on peaches and nectarines. Eur J Plant Pathol 128: 51–63CrossRefGoogle Scholar
  5. Casals C, Elmer PAG, Viñas I, Teixidó N, Sisquella M, Usall J (2012) The combination of curing with either chitosan or Bacillus subtilis CPA-8 to control brown rot infections caused by Monilinia fructicola. Postharvest Biol Technol 64: 126–132CrossRefGoogle Scholar
  6. Champagne CP, Gardner N, Brochu E, Beaulieu Y (1991) The freeze-drying of lactic acid bacteria: a review. Can Inst Food Sci Technol 24: 118–128CrossRefGoogle Scholar
  7. Costa E, Usall J, Teixidó N, García N, Viñas I (2000). Effect of protective agents, rehydration media and initial cell concentration on viability of Pantoea agglomerans strain CPA-2 subjected to freeze-drying. J Appl Microbiol 89: 793–800CrossRefPubMedGoogle Scholar
  8. Droby S, Wisniewski M, Macarisin D, Wilson C (2009). Twenty years of postharvest biocontrol research: is it time for a new paradigm? Postharvest Biol Technol 52: 137–145CrossRefGoogle Scholar
  9. Gotor-Vila A., Teixidó N, Usall J, Dashevskaya S, Torres R (2016). Development of a SCAR marker and a strain-specific genomic marker for the detection of the biocontrol agent strain CPA-8 Bacillus amyloliquefaciens (formerly B. subtilis). Ann Appl Biol 169: 248–256CrossRefGoogle Scholar
  10. Hubalek Z (2003) Protectants used in the cryopreservation of microorganisms. Cryobiology 46: 205–229CrossRefPubMedGoogle Scholar
  11. Janisiewicz WJ, Korsten L (2002) Biological control of postharvest diseases of fruits. Annu Rev Phytopathol 40: 411–441CrossRefPubMedGoogle Scholar
  12. Larena I, Torres R, De Cal A, Liñán M, Melgarejo P, Domenichini P, Bellini A, Mandrin JF, Lichou J, Ochoa de Eribe X, Usall J (2005) Biological control of postharvest brown rot (Monilinia spp.) of peaches by field applications of Epicoccum nigrum. Biol Control 32: 305–310CrossRefGoogle Scholar
  13. Li BQ, Tian SP (2007) Effect of intracellular trehalose in Cryptococcus laurentii and exogenous lyoprotectants on its viability and biocontrol efficacy on Penicillium expansum in apple fruit. Lett Appl Microbiol 44: 437–442CrossRefPubMedGoogle Scholar
  14. Mari M, Torres R, Casalini L, Lamarca N, Mandrin JF, Lichou J, Larena I, De Cal MA, Melgarejo P, Usall J (2007) Control of post-harvest brown rot on nectarine by Epicoccum nigrum and physico-chemical treatments. J Sci Food Agric 87: 1271–1277CrossRefGoogle Scholar
  15. Mari M, Di Francesco A, Bertolini P (2014) Control of fruit postharvest diseases: old issues and innovative approaches. Stewart Postharvest Review 1(1): 1–4CrossRefGoogle Scholar
  16. Melin P, Hakansson S, Schnurer J (2007) Optimisation and comparison of liquid and dry formulations of the biocontrol yeast Pichia anomala J121. Appl Microbiol Biotechnol 73: 1008–1016CrossRefPubMedGoogle Scholar
  17. Melin P, Schnurer J, Hakansson S (2011) Formulation and stabilisation of the biocontrol yeast Pichia anomala. Anton Leeuw 99: 107–112CrossRefGoogle Scholar
  18. Navarta LG, Calvo J, Calvente V, Benuzzi D, Sanz MI (2011). Freezing and freeze-drying of the bacterium Rahnella aquatilis BNM 0523: study of protecting agents, rehydration media and freezing temperatures. Lett Appl Microbiol 53: 565–571CrossRefPubMedGoogle Scholar
  19. Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P (2000). Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev 64: 548–572CrossRefPubMedPubMedCentralGoogle Scholar
  20. Nunes C (2012) Biological control of postharvest diseases of fruit. Eur J Plant Pathol 133: 181–196CrossRefGoogle Scholar
  21. Sabuquillo P, De Cal A, Melgarejo P (2010) Development of a dried Penicillium oxalicum conidial formulation for use as a biological agent against Fusarium wilt of tomato: selection of optimal additives and storage conditions for maintaining conidial viability. Biol Control 54: 221–229CrossRefGoogle Scholar
  22. Sharma RR, Singh D, Singh R (2009) Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: a review. Biol Control 50: 205–221CrossRefGoogle Scholar
  23. Srivastava S, Mishra G (2010) Fluid bed technology: overview and parameters for process selection. Int J Pharma Sci Drug Res 2 (4): 236–246Google Scholar
  24. Strasser S, Neureiter M, Geppl M, Braun R, Danner H (2009) Influence of lyophilization, fluidized bed drying, addition of protectants, and storage on the viability of lactic acid bacteria. J Appl Microbiol 107: 167–177CrossRefPubMedGoogle Scholar
  25. Teixidó N, Torres R, Abadias M, Usall J (2011) Biological control of postharvest diseases in fruit and vegetables. In: Lacroix, C., (Ed.), Protective cultures, antimicrobial metabolites and bacteriophages for food and beverage. Woodhead Publishing Limited. Cambridge, pp. 364–402CrossRefGoogle Scholar
  26. Usall J, Casals C, Sisquella M, Palou L, De Cal A (2015) Alternative technologies to control postharvest diseases of stone fruits. Stewart Postharvest Rev 11(4): 1–6CrossRefGoogle Scholar
  27. Yánez-Mendizábal V, Viñas I, Usall J, Cañamás T, Teixidó N (2012a) Endospore production allows using spray-drying as a possible formulation system of the biocontrol agent Bacillus subtilis CPA-8. Biotechnol Lett 34: 729–735CrossRefPubMedGoogle Scholar
  28. Yánez-Mendizábal V, Viñas I, Usall J, Torres R, Solsona C, Abadias M, Teixidó N (2012b) Formulation development of the biocontrol agent Bacillus subtilis strain CPA-8 by spray-drying. J Appl Microbiol 112: 954–965CrossRefPubMedGoogle Scholar
  29. Yánez-Mendizábal V, Viñas I, Usall J, Torres R, Solsona C, Teixidó N (2012c) Production of the postharvest biocontrol agent Bacillus subtilis CPA-8 using low cost commercial products and by-products. Biol Control 60: 280–289CrossRefGoogle Scholar
  30. Yánez-Mendizábal V, Zeriouh H, Viñas I, Torres R, Usall J, de Vicente A, Pérez-García A, Teixidó N (2012d) Biological control of peach brown rot (Monilinia spp.) by Bacillus subtilis CPA-8 is based on production of fengycin-like lipopeptides. Eur J Plant Pathol 132: 609–619CrossRefGoogle Scholar
  31. Zhan Y, Xu Q, Yang MM, Yang HT, Liu HX, Wang YP, Guo JH (2011) Screening of freeze-dried protective agents for the formulation of biocontrol strains, Bacillus cereus AR156, Burkholderia vietnamiensis B418 and Pantoea agglomerans 2Re40. Lett Appl Microbiol 54: 10–17CrossRefPubMedGoogle Scholar

Copyright information

© International Organization for Biological Control (IOBC) 2017

Authors and Affiliations

  • A. Gotor-Vila
    • 1
  • J. Usall
    • 1
  • R. Torres
    • 1
  • M. Abadias
    • 1
  • N. Teixidó
    • 1
    Email author
  1. 1.IRTA, XaRTA-Postharvest, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de LleidaLleidaSpain

Personalised recommendations