Skip to main content
Log in

The effect of eight common herbicides on the predatory activity of the agrobiont spider Pardosa agrestis

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

The impact of eight herbicides in different residual stages on the predatory activity of a potential biological control agent, the wolf spider Pardosa agrestis, was studied in the laboratory. We found that fresh wet residues of all tested herbicides negatively affected the total and cumulative predatory activity of this species. Moreover, treatment with 48-h-old residues of the glufosinate ammonium herbicide Basta induced a significant increase in predatory activity in P. agrestis, presumably as a consequence of hormesis. These results imply that the natural pest control provided by the agrobiont spider P. agrestis can be weakened by the application of the studied herbicides. On the basis of our results, we suggest that sublethal effects on beneficial organisms should be considered in the planning of weed management of agroecosystems and should not be omitted from the herbicide registration process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams JB (1960) Effects of spraying 2,4-D amine on coccinellid larvae. Can J Zool 38:285–288

    Article  CAS  Google Scholar 

  • Asteraki E, Hanks C, Clements R (1992) The impact of the chemical removal of the hedge-base flora on the community structure of carabid beetles (Col., Carabidae) and spiders (Araneae) ot the field and hedge bottom. J Appl Entomol 113:398–406

    Article  Google Scholar 

  • Baylis AD (2000) Why glyphosate is a global herbicide: strengths, weaknesses and prospects. Pest Manag Sci 56(4):299–308

    Article  CAS  Google Scholar 

  • Benamú MA, Schneidr MI, Sánchez NE (2010) Effect of the herbicide glyphosate on biological attributes of Alpaida veniliae (Araneae, Araneidae), in laboratory. Chemosphere 78(7):871–876

    Article  PubMed  Google Scholar 

  • Brunninger B, Wiswanathan R, Beese F (1994) Terbuthylazine and carbofuran effects on growth and reproduction within three generations of Eisenia Andrei (Oligochaeta). Biol Fertil Soils 18(2):83–88

    Article  CAS  Google Scholar 

  • Clough Y, Kruess A, Kleijn T, Tscharntke T (2005) Spider diversity in cereal fields: comparing factors at local, landscape and regional scales. J Biogeogr 32(11):2007–2014

    Article  Google Scholar 

  • Deng L, Dai J, Cao H, Xu M (2007) Effects of methamidophos on the predating behavior of Hylyphantes graminicola (Sundevall) (Araneae: Linyphiidae). Environ Toxicol Chem 26(3):478–482

    Article  CAS  PubMed  Google Scholar 

  • Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticide on beneficial arthropods. Annu Rev Entomol 525:81–106

    Article  Google Scholar 

  • Duke O, Cedergreen N, Velini ED, Belz RG (2006) Hormesis: is it an important factor in herbicide use and allelopathy? Outlooks Pest Manag 17(1):29–33

    Google Scholar 

  • Evans SE, Shaw EM, Rypstra AL (2010) Exposure to a glyphosate-based herbicide affects agrobiont predatory arthropod behaviour and long-term survival. Ecotoxicology 19(7):1249–1257

    Article  CAS  PubMed  Google Scholar 

  • Foelix RF (1996) Biology of spiders. Oxford University Press, New York

    Google Scholar 

  • Forbes VE (2000) Is hormesis and evolutionary expectation? Funct Ecol 14(1):12–24

    Article  Google Scholar 

  • Haughton AJ, Bell JR, Boatman ND, Wilcox A (1999) The effect of different rates of the herbicide glyphosate on spiders in arable field margins. J Arachnol 27:249–254

    Google Scholar 

  • Haughton AJ, Bell JR, Boatman ND, Wilcox A (2001) The effect of the herbicide glyphosate on non-target spiders: part II. Indirect effects on Lepthyphantes tenuis in field margins. Pest Manag Sci 57(11):1037–1072

    Article  CAS  PubMed  Google Scholar 

  • Heimer S, Nentwig W (1991) Spinnen Mitteleuropas. Ein Bestimmungsbuch. Verlag Paul Parey, Berlin, Hamburg

    Google Scholar 

  • Lang A (2003) Intraguild interference and biocontrol effects of generalist predators in a winter wheat field. Oecologia 134(1):144–153

    Article  PubMed  Google Scholar 

  • Lang A, Filser J, Henschel JR (1999) Predation by ground beetles and wolf spiders on herbivorous insects in a maize crop. Agric Ecosyst Environ 72(2):189–199

    Article  Google Scholar 

  • Leccia F, Kysilková K, Kolářová M, Hamouzová K, Líznarová E, Korenko S (2016) Disruption of the chemical communication of the European agrobiont ground-dwelling spider Pardosa agrestis by pesticides. J Appl Entomol (in press)

  • Lengwiler U, Benz G (1994) Effects of selected pesticides on web building behaviour of Larinioides sclopetarius (Clerck) (Araneae, Araneidae). J Appl Entomol 117(1–5):99–108

    Article  Google Scholar 

  • Mansour F, Nentwig W (1988) Effects of agrochemical residues on four spider taxa: laboratory methods for pesticide tests with web-building spiders. Phytoparasitica 16(4):317–326

    Article  CAS  Google Scholar 

  • Marc P, Canard Y (1997) Spiders (Araneae) useful for pest limitation and bioindication. Agric Ecosyst Environ 74(1):229–273

    Article  Google Scholar 

  • Massa R, Blevins S, Chao SL (2008) Role of acetylcholinesterase and glutathione S-transferase following exposure to nicosulfuron and diazinon in Helicoverpa zea. Ecotoxicol Environ Saf 71(1):230–235

    Article  CAS  PubMed  Google Scholar 

  • Michalko R, Košulič O (2016) Temperature-dependent effect of two neurotoxic insecticides on predatory potential of Philodromus spiders. J Pest Sci (in press)

  • Michalková V, Pekár S (2009) How glyphosate altered the behaviour of agrobiont spiders (Araneae: Lycosidae) and beetles (Coleoptera: Carabidae). Biol Control 51(3):444–449

    Article  Google Scholar 

  • Nentwig W (ed.) (1987) Ecophysiology of spiders. Springer-Verlag, Berlin, Heidelberg

    Google Scholar 

  • Niedobová J, Hula V, Michalko R (2016) Sublethal effect of agronomical surfactants on the spider Pardosa agrestis. Environ Polut 213:84–89

    Article  Google Scholar 

  • Öberg S, Egbom B, Bommarco R (2007) Influence of habitat type and surrounding landscape on spider diversity in Swedish agroecosystems. Agric Ecosyst Environ 122(2):211–219

    Article  Google Scholar 

  • Pekár S (2012) Spiders (Araneae) in the pesticide world: an ecotoxicological review. Pest Manag Sci 68(11):1438–1446

    Article  PubMed  Google Scholar 

  • Pekár S, Brabec M (2009) Modern analysis of biological data. 1. Generalized linear models in R. Scientia, Prague

    Google Scholar 

  • Pekár S, Brabec M (2012) Modern analysis of biological data 2. Linear models with correlation in R. Masaryk University Press, Brno

    Google Scholar 

  • Pekár S, Michalko R, Loverre P, Líznarová E, Černecká Ľ (2015) Biological control in winter: novel evidence for the importance of generalist predators. J Appl Ecol 52(1):270–279

    Article  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, R Core Team (2015). nlme: linear and nonlinear mixed effects models. R package version 3.1-122. http://CRAN.R-project.org/package=nlme

  • Powles SB (2008) Evolved glyphosate-resistant weeds around the world: lessons to be learnt. Pest Manag Sci 64(4):360–365

    Article  CAS  PubMed  Google Scholar 

  • Salminen J, Eriksson I, Haimi J (1996) Effects of terbuthylazine on soil fauna and decomposition processes. Ecotoxicol Environ Saf 34(2):184–189

    Article  CAS  PubMed  Google Scholar 

  • Samsøe-Petersen L (1995) Effects of 67 herbicides and plant growth regulators on the rove beetle Aleochara bilineata (Col.: Staphylinidae) in the laboratory. Entomophaga 40(1):95–104

    Article  Google Scholar 

  • Seguin F, Leboulanger C, Rimet F, Druart C, Bérard A (2001a) Effects of atrazine and nicosulfuron on phytoplankton in systems of increasing complexity. Arch Environ Contam Toxicol 40(2):198–208

    Article  CAS  PubMed  Google Scholar 

  • Seguin F, Druart JC, Le Cohu R (2001b) Effects of atrazine and nicosulfuron on periphytic diatom communities in freshwater outdoor lentic mosocosms. Ann Limnol 37(1):3–8

    Article  Google Scholar 

  • Shaw EM, Wheater CP, Langan AM (2005) The effects of cypermethrin on Tenuiphantes tenuis (Blackwall, 1852): development of a technique for assessing the impact of pesticides on web building in spiders (Araneae: Linyphiidae). Acta Zool Bulg 1:173–179

    Google Scholar 

  • R Development Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available online at http://www.R-project.org/

  • Toft S, Jensen AP (1998) No negative sublethal effects of two insecticides on prey capture and development of a spider. Pestic Sci 52(3):223–228

    Article  CAS  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York

    Book  Google Scholar 

  • Wang Z, Song D-X, Zhu M-S (2006) Functional response and searching behavior to the brown planthopper, Nilaparvata lugens by the wolf spider, Pardosa pseudoannulata under low dose chemical pesticides. Acta Entomol Sin 49(2):295–301

    CAS  Google Scholar 

  • Wehling A, Heimbach U, Coulson MJM, Römbke J, Schmitzer S, Wilhelmy H (1998) Method for testing effects of plant protection agents on spiders of the Genus Pardosa (Araneae, Lycosidae) in the laboratory. IOBC Bull 21(6):109–117

    Google Scholar 

  • Wiles JA, Jepson PC (1994) Sub-lethal effects of deltamethrin residues on the within-crop behaviour and distribution of Coccinella septempuctata. Entomol Exp Appl 72(1):33–45

    Article  CAS  Google Scholar 

  • Wrinn KM, Evans S, Rypstra AL (2012) Predator cues and an herbicide affect activity and emigration in an agrobiont wolf spider. Chemosphere 87(4):390–396

    Article  CAS  PubMed  Google Scholar 

  • Xiao N, Jing B, Ge F, Liu X (2005) The fate of herbicide acetochlor and its toxicity to Eisenia foetida under laboratory conditions. Chemosphere 62(8):1366–1373

    Article  PubMed  Google Scholar 

  • Zanuncio TV, Serrão JE, Zanuncio JC, Guedes RNC (2003) Permethrin-induced hormesis on the predator Supputius cincticeps (Stål, 1860) (Heteroptera: Pentatomidae). Crop Prot 22(7):941–947

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The present study was supported by the European Science Foundation and Ministry for Education, Youth), and Sport of the Czech Republic, project CZ.1.07/2.3.00/30.0040, the Institutional Support Program for Long Term Conceptual Development of Research Institutions provided by the Ministry for Education, Youth), NAZVA QJ1310128 project provided by The Ministry of Agriculture of the Czech Republic and Sport of the Czech Republic, the Education for Competitiveness Operational Programme (European Social Fund and state budget of the Czech Republic). RM was supported by the student grant no. MUNI/A/1484/2014 from Masaryk University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Niedobová.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Handling Editor: Marta Montserrat.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korenko, S., Niedobová, J., Kolářová, M. et al. The effect of eight common herbicides on the predatory activity of the agrobiont spider Pardosa agrestis . BioControl 61, 507–517 (2016). https://doi.org/10.1007/s10526-016-9729-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-016-9729-0

Keywords

Navigation