Skip to main content

Vitis vinifera microbiome: from basic research to technological development

Abstract

Plants naturally harbours a complex microbial ecosystem or plant microbiome, as neutral, beneficial or pathogens microorganisms, that are in a close interaction with the plant. The balance of these interactions is a key element for plant health, plant growth and productivity although several factors as ecological and environmental factors represents important drivers of the microorganism’s community. Herein, a review on plant microbiome is presented, and the case study of Vitis vinifera (grapevine) is presented as an example of the application of the study of a woody plant microbiome. Overall, new ecologically and sustainable strategies for agriculture are needed. The exploitation of the natural microbiome associated with plants and the identification of novel potential strains with plant benefits and biocontrol potential represent a challenge and a technological development for crops protection.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Adesemoye A, Torbert H, Kloepper J (2009) Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microb Ecol 58:921–929

    CAS  Article  PubMed  Google Scholar 

  2. Arber W (2008) Molecular mechanisms driving Darwinian evolution. Math Comput Model 47:666–674

    Article  Google Scholar 

  3. Bakker P, Berendsen R, Doornbos R, Wintermans P, Piterse C (2013) The rhizosphere revisited: root microbiomics. Front Plant Sci 4:165

    Article  PubMed  PubMed Central  Google Scholar 

  4. Baldan E, Nigris S, Populin F, Zottini M, Squartini A, Baldan B (2014) Identification of culturable bacterial endophyte community isolated from tissues of Vitis vinifera Glera. Plant Biosyst 148:508–516

    Article  Google Scholar 

  5. Barata A, Malfeito-Ferreira M, Loureiro V (2012) The microbial ecology of wine grape berries. Int J Food Microbiol 153:243–259

    CAS  Article  PubMed  Google Scholar 

  6. Bartoli C, Lamichhane J, Berge O, Guilbaud C, Varvaro L, Balestra G, Vinatzer B, Morris E (2014) A framework to gage the epidemic potential of plant pathogens in environmental reservoirs: the example of kiwifruit canker. Mol Plant Pathol 16:137–149

    Article  PubMed  Google Scholar 

  7. Baumgartner K (2006) The role of beneficial mycorrhizal fungi in grapevine nutrition. ASEV Tech Update 1:3

    Google Scholar 

  8. Berendsen R, Pieterse C, Bakker P (2012) The rhizosphere microbiome and plant health. Trends Plant Sci 17:478–486

    CAS  Article  PubMed  Google Scholar 

  9. Berg G (2009) Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    CAS  Article  PubMed  Google Scholar 

  10. Berg G, Smalla K (2009) Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol Ecol 68:1–13

    CAS  Article  PubMed  Google Scholar 

  11. Berg J, Tom-Petersen A, Nybroe O (2005) Copper amendment of agricultural soil selects for bacterial antibiotic resistance in the field. Lett Appl Microbiol 40:146–151

    CAS  Article  PubMed  Google Scholar 

  12. Berg G, Zachow C, Müller H, Philipps J, Tilcher R (2013) Next-generation bio-products sowing the seeds of success for sustainable agriculture. Agronomy 3:648–656

    Article  Google Scholar 

  13. Berg G, Grube M, Schloter M, Smalla K (2014) Unraveling the plant microbiome: looking back and future perspectives. Front Microbiol 5:1–7

    Google Scholar 

  14. Bertsch C, Ramírez-Suero M, Magnin-Robert M, Larignon P, Chong J, Abou-Mansour E, Spagnolo A, Clément C, Fontaine F (2012) Grapevine trunk diseases: complex and still poorly understood. Plant Pathol 62:243–265

    Article  Google Scholar 

  15. Bloemberg G, Lugtenberg B (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350

    CAS  Article  PubMed  Google Scholar 

  16. Bokulich N, Thorngate J, Richardson P, Mills D (2014) Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate. Proc Natl Acad Sci 111:E139–E148

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Bruez E, Vallance J, Gerbore J, Lecomte P, Costa JP, Guerin-Dubrana L, Rey P (2014) Analyses of the temporal dynamics of fungal communities colonizing the healthy wood tissues of esca leaf-symptomatic and asymptomatic vines. PLoS ONE 9:e95928

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bulgari D, Casati P, Brusetti L, Quaglino F, Brasca M, Daffonchio D, Bianco P (2009) Endophytic bacterial diversity in grapevine (Vitis vinifera L.) leaves described by 16S rRNA gene sequence analysis and length heterogeneity-PCR. J Microbiol 47:393–401

    CAS  Article  PubMed  Google Scholar 

  19. Bulgari D, Casati P, Quaglino F, Bianco P (2014) Endophytic bacterial community of grapevine leaves influenced by sampling date and phytoplasma infection process. BMC Microbiol 14:198–209

    Article  PubMed  PubMed Central  Google Scholar 

  20. Campisano A, Antonielli L, Pancher M, Yousaf S, Pindo M, Pertot I (2014) Bacterial endophytic communities in the grapevine depend on pest management. PLoS ONE 9:e112763

    Article  PubMed  PubMed Central  Google Scholar 

  21. Casieri L, Hofstetter V, Viret O, Gindro K (2009) Fungal communities living in the wood of different cultivars of young Vitis vinifera plants. Phytopathol Mediterr 48:73–83

    Google Scholar 

  22. Chatelet D, Matthews M, Rost T (2006) Xylem structure and connectivity in grapevine (Vitis vinifera) shoots provides a passive mechanism for the spread of bacteria in grape plants. Ann Bot 98:483–494

    Article  PubMed  PubMed Central  Google Scholar 

  23. Compant S, Reiter B, Sessitsch A, Nowak J, Clément C, Barka E (2005) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol 71:1685–1693

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Compant S, Kaplan H, Sessitsch A, Nowak J, Barka E, Clément C (2008) Endophytic colonization of Vitis vinifera L. by Burkholderia phytofirmans strain PsJN: from the rhizosphere to inflorescence tissues. FEMS Microbiol Ecol 63:84–93

    CAS  Article  PubMed  Google Scholar 

  25. Compant S, Clément C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    CAS  Article  Google Scholar 

  26. Compant S, Mitter B, Colli-Mull J, Gangl H, Sessitsch A (2011) Endophytes of grapevine flowers, berries, and seeds: identification of cultivable bacteria, comparison with other plant parts, and visualization of niches of colonization. Microb Ecol 62:188–197

    Article  PubMed  Google Scholar 

  27. Compant S, Sessitsch A, Mathieu F (2012) The 125th anniversary of the first postulation of the soil origin of endophytic bacteria: a tribute to M.L.V. Galippe. Plant Soil 356:299–301

    CAS  Article  Google Scholar 

  28. Compant S, Brader G, Muzammil S, Sessitsch A, Lebrihi A, Mathieu F (2013) Use of beneficial bacteria and their secondary metabolites to control grapevine pathogen diseases. BioControl 58:435–455

    Article  Google Scholar 

  29. Corneo P, Pellegrini A, Cappellin L, Roncador M, Chierici M, Gessler C, Pertot I (2013) Microbial community structure in vineyard soils across altitudinal gradients and in different seasons. FEMS Microbiol Ecol 84:588–602

    CAS  Article  PubMed  Google Scholar 

  30. Cosoveanu A, Cabrera Y, Hernandez G, Cabrera R (2014) Endophytic fungi from grapevine cultivars in Canary Islands and their activity against phytopatogenic fungi. Intl J Agri Crop Sci 7:1497–1503

    Google Scholar 

  31. DeAngelis K, Brodie E, DeSantis T, Andersen G, Lindow S, Firestone M (2009) Selective progressive response of soil microbial community to wild oat roots. ISME J 3:168–178

    CAS  Article  PubMed  Google Scholar 

  32. Delaunois B, Farace G, Jeandet P, Clément C, Baillieul F, Dorey S, Cordelier S (2014) Elicitors as alternative strategy to pesticides in grapevine? Current knowledge on their mode of action from controlled conditions to vineyard. Environ Sci Pollut Res Int 21:4837–4846

    Article  PubMed  Google Scholar 

  33. Dell’Amico E E, Mazzocchi M, Cavalca L, Allievi L, Andreoni V (2008) Assessment of bacterial community structure in a long-term copper-polluted ex-vineyard soil. Microbiol Res 163:671–683

    Article  PubMed  Google Scholar 

  34. Efsa, PLH Panel (EFSA Panel on Plant Health) (2015) Scientific opinion on the risks to plant health posed by Xylella fastidiosa in the EU territory, with the identification and evaluation of risk reduction options. EFSA J 13:3989

    Google Scholar 

  35. Esparza M (2006) Copper content of grape and wine from Italian farms. Food Addit Contam 23:274–293

    Article  Google Scholar 

  36. EUROSTAT (2014) European Statistics. Available via EUROSTAT. http://ec.europa.eu/eurostat

  37. FAO (2013) FAOSTAT database collections. Food and Agriculture Organization of the United Nations. Available via FAOSTAT. http://faostat3.fao.org/home/E

  38. Fernández D, Voss K, Bundschuh M, Zubrod J, Schäfer R (2015) Effects of fungicides on decomposer communities and litter decomposition in vineyard streams. Sci Total Environ 533:40–48

    Article  PubMed  Google Scholar 

  39. Fletcher J, Luster D, Bostock R, Burans J, Cardwell K, Gottwald T, McDaniel L, Royer M, Smith K (2010) Emerging infectious plant diseases. In: Scheld W, Grayson M, Hughes J (eds) Emerging infections. ASM Press, Washington DC, pp 337–366

    Google Scholar 

  40. Fontaine F, Pinto C, Vallet J, Clément C, Gomes A, Spagnolo A (2015) The effects of grapevine trunk diseases (GTDs) on vine physiology. Eur J Plant Pathol. Available via Springer Link. http://link.springer.com/article/10.1007%2Fs10658-015-0770-0. Cited 21 Sept 2015

  41. Francl L (2001) The disease triangle: a plant pathological paradigm revisited. The Plant Heal Instr. Available via APS. http://www.apsnet.org/edcenter/instcomm/TeachingArticles/Pages/DiseaseTriangle.aspx

  42. Galippe V (1887a) Note sur la présence de micro-organismes dans les tissus végétaux. CR Hebd Sci Mem Soc Biol 39:410–416

    Google Scholar 

  43. Galippe V (1887b) Note sur la présence de micro-organismes dans les tissus végétaux (2ème note). CR Hebd Sci Mem Soc Biol 39:557–560

    Google Scholar 

  44. Gardener B, Fravel D (2002) Biological control of plant pathogens: research, commercialization, and application in the USA. Plant Heal Prog. Available via APS. http://www.apsnet.org/publications/apsnetfeatures/Pages/biocontrol.aspx. Cited 3 May 2002

  45. González V, Tello M (2011) The endophytic mycota associated with V vinifera. Fungal Divers 47:29–42

    Article  Google Scholar 

  46. Grube M, Schmid F, Berg G (2011) Black fungi and associated bacterial communities in the phyllosphere of grapevine. Fungal Biol 115:978–986

    Article  PubMed  Google Scholar 

  47. Guo B, Wang Y, Sun X, Tang K (2008) Bioactive natural products from endophytes: a review. Appl Biochem Microbiol 44:136–142

    CAS  Article  Google Scholar 

  48. Hallmann J, Quadt-Hallmann A, Mahaffee W, Kloepper J (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    CAS  Article  Google Scholar 

  49. Holland T, Bowen P, Bogdanoff C, Hart M (2013) How distinct are arbuscular mycorrhizal fungal communities associating with grapevines? Biol Fertil Soils 50:667–674

    Article  Google Scholar 

  50. Hopkins D (2005) Biological control of Pierce’s disease in the vineyard with strains of Xylella fastidiosa benign to grapevine. Plant Dis 89:1348–1352

    Article  Google Scholar 

  51. Lamb T, Tonkyn D, Kluepfel D (1996) Movement of Pseudomonas aureofaciens from the rhizosphere to aerial plant tissue. Can J Microbiol 42:1112–1120

    CAS  Article  Google Scholar 

  52. Lamichhane J, Varvaro L, Parisi L, Audergon J, Morris C (2014) Disease and frost damage of woody plants caused by Pseudomonas syringae: seeing the forest for the trees. Adv Agron 126:235–295

    Article  Google Scholar 

  53. Larignon P, Dubos B (1997) Fungi associated with Esca disease in grapevine. Eur J Plant Pathol 103:147–157

    Article  Google Scholar 

  54. Lejon D, Martins J, Lévêque J, Spadini L, Pascault N, Landry D, Milloux M, Nowak V, Chaussod R, Ranjard L (2008) Copper dynamics and impact on microbial communities in soils of variable organic status. Environ Sci Technol 42:2819–2825

    CAS  Article  PubMed  Google Scholar 

  55. Leveau J, Tech J (2011) Grapevine microbiomics: bacterial diversity on grape leaves and berries revealed by high-throughput sequence analysis of 16S rRNA amplicons. Acta Hortic 905:31–42

    Article  Google Scholar 

  56. Lindow S, Brandl M (2003) Microbiology of the phyllosphere. Appl Environ Microbiol 69:1875–1883

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. Lodewyckx C, Vangronsveld J, Porteous F, Moore E, Taghavi S, Mezgeay M, Lelie D (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21:583–596

    Article  Google Scholar 

  58. Lumini E, Orgiazzi A, Borriello R, Bonfante P, Bianciotto V (2010) Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land-use gradient using a pyrosequencing approach. Environ Microbiol 12:2165–2179

    CAS  PubMed  Google Scholar 

  59. Magurno F, Balestrini R, Lumini E, Bianciotto V (2010) Outside and inside grapevine roots: arbuscular mycorrhizal fungal communities in a Nebbiolo vineyard. Quad Vitic Enol Univ Torino 31:91–95

    Google Scholar 

  60. Marasco R, Rolli E, Fusi M, Cherif A, Abou-Hadid A, El-Bahairy U, Borin S, Sorlini C, Daffonchio D (2013) Plant growth promotion potential is equally represented in diverse grapevine root-associated bacterial communities from different biopedoclimatic environments. Biomed Res Int 2013:1–17

    Article  Google Scholar 

  61. Martini M, Musetti R, Grisan S, Polizzotto R, Borselli S, Pavan F, Osler R (2009) DNA-dependent detection of the grapevine fungal endophytes Aureobasidium pullulans and Epicoccum nigrum. Plant Dis 93:993–998

    CAS  Article  Google Scholar 

  62. Martins G, Lauga B, Miot-Sertier C, Mercier A, Lonvaud A, Soulas M, Soulas G, Masneuf-Pomarède I (2013) Characterization of epiphytic bacterial communities from grapes, leaves, bark and soil of grapevine plants grown, and their relations. PLoS ONE 8:e73013

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. Martins G, Vallance J, Mercier A, Albertin W, Stamatopoulos P, Rey P, Lonvaud A, Masneuf-Pomarède I (2014) Influence of the farming system on the epiphytic yeasts and yeast-like fungi colonizing grape berries during the ripening process. Int J Food Microbiol 177:21–28

    Article  PubMed  Google Scholar 

  64. Mercado-Blanco J, Bakker P (2007) Interactions between plants and beneficial Pseudomonas spp.: exploiting bacterial traits for crop protection. A van Leeuw J Microb 92:367–389

    Article  Google Scholar 

  65. Morens D, Folkers G, Fauci A (2004) The challenge of emerging and re-emerging infectious diseases. Nature 430:242–249

    CAS  Article  PubMed  Google Scholar 

  66. Morse S (1995) Factors in the emergence of infectious diseases. Emerg Infect Dis 1:7–15

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. Müller T, Ruppel S (2014) Progress in cultivation-independent phyllosphere microbiology. FEMS Microbiol Ecol 87:2–17

    Article  PubMed  PubMed Central  Google Scholar 

  68. Newton A, Gravouil C, Fountaine J (2010) Managing the ecology of foliar pathogens: ecological tolerance in crops. Ann Appl Biol 157:343–359

    Article  Google Scholar 

  69. Pancher M, Ceol M, Corneo P, Longa C, Yousaf S, Pertot I, Campisano A (2012) Fungal endophytic communities in grapevines (Vitis vinifera L.) respond to crop management. Appl Environ Microbiol 78:4308–4317

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. Pautasso M, Döring T, Garbelotto M, Pellis L, Jeger M (2012) Impacts of climate change on plant diseases-opinions and trends. Eur J Plant Pathol 133:295–313

    Article  Google Scholar 

  71. Philippot L, Raaijmakers J, Lemanceau P, van der Putten W (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799

    CAS  Article  PubMed  Google Scholar 

  72. Pietrzak U, McPhail D (2004) Copper accumulation, distribution and fractionation in vineyard soils of Victoria, Australia. Geoderma 122:151–166

    CAS  Article  Google Scholar 

  73. Pinto C, Pinho D, Sousa S, Pinheiro M, Egas C, Gomes A (2014) Unravelling the diversity of grapevine microbiome. PLoS ONE 9:e85622

    Article  PubMed  PubMed Central  Google Scholar 

  74. Pinto C, Pinho D, Cardoso R, Custódio V, Fernandes J, Sousa S, Pinheiro M, Egas C, Gomes A (2015) Wine fermentation microbiome: a landscape from different Portuguese wine appellations. Front Microbiol 6:1–13

    CAS  Article  Google Scholar 

  75. Porras-Alfaro A, Bayman P (2011) Hidden fungi, emergent properties: endophytes and microbiomes. Annu Rev Phytopathol 49:291–315

    CAS  Article  PubMed  Google Scholar 

  76. Purcell A (1996) Fastidious xylem-limited bacterial plant pathogens. Annu Rev Phytopathol 34:131–151

    CAS  Article  PubMed  Google Scholar 

  77. Pusey P, Stockwell V, Rudell D (2008) Antibiosis and acidification by Pantoea agglomerans strain E325 may contribute to suppression of Erwinia amylovora. Phytopathology 98:1136–1143

    CAS  Article  PubMed  Google Scholar 

  78. Rolli E, Marasco R, Vigani G, Ettoumi B, Mapelli F, Deangelis M, Gandolfi C, Casati E, Previtali F, Gerbino R, Cei F, Borin S, Sorlini C, Zocchi G, Daffonchio D (2015) Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Environ Microbiol 17:316–331

    Article  PubMed  Google Scholar 

  79. Sabate J, Cano J, Esteve-Zarzoso B, Guillamón J (2002) Isolation and identification of yeasts associated with vineyard and winery by RFLP analysis of ribosomal genes and mitochondrial DNA. Microbiol Res 157:267–274

    CAS  Article  PubMed  Google Scholar 

  80. Schmid F, Moser G, Müller H, Berg G (2011) Functional and structural microbial diversity in organic and conventional viticulture: organic farming benefits natural biocontrol agents. Appl Environ Microbiol 77:2188–2191

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  81. Schreiner R, Mihara K (2009) The diversity of arbuscular mycorrhizal fungi amplified from grapevine roots (Vitis vinifera L.) in Oregon vineyards is seasonally stable and influenced by soil and vine age. Mycologia 101:599–611

    Article  PubMed  Google Scholar 

  82. Setati M, Jacobson D, Andong U, Bauer F (2012) The vineyard yeast microbiome, a mixed model microbial map. PLoS ONE 7:e52609

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  83. Setati M, Jacobson D, Bauer F (2015) Sequence-based analysis of the Vitis vinifera L. cv Cabernet Sauvignon grape must mycobiome in three South African vineyards employing distinct agronomic systems. Front Microbiol 6:1–12

    Article  Google Scholar 

  84. Steenwerth K, Drenovsky R, Lambert J, Kluepfel D, Scow K, Smart D (2008) Soil morphology, depth and grapevine root frequency influence microbial communities in a Pinot Noir vineyard. Soil Biol Biochem 40:1330–1340

    CAS  Article  Google Scholar 

  85. Strange N (2003) The causal agents of plant disease: identity and impact. In: Strange N (ed) Introduction to plant pathology. Wiley, New York, pp 1–30

    Google Scholar 

  86. Tarbah F, Goodman R (1987) Systemic spread of Agrobacterium tumefaciens biovar 3 in the vascular system of grapes. Phytopathology 77:915–920

    Article  Google Scholar 

  87. Thorne E, Young B, Young G, Stevenson J, Labavitch J, Matthews M, Rost T (2006) The structure of xylem vessels in grapevine (vitaceae) and a possible passive mechanism for the systemic spread of bacterial disease. Am J Bot 93:497–504

    Article  PubMed  Google Scholar 

  88. Turner T, James E, Poole P (2013) The plant microbiome. Genome Biol 14:209–218

    Article  PubMed  PubMed Central  Google Scholar 

  89. Vandenkoornhuyse P, Quaiser A, Duhamel M, Le van A, Dufresne A (2015) The importance of the microbiome of the plant holobiont. New Phytol 4:1–11

    Google Scholar 

  90. Vega-Avila D, Gumiere T, Andrade P, Lima-perim J, Durrer A, Baigori M, Vazquez F, Andreote F (2015) Bacterial communities in the rhizosphere of Vitis vinifera L. cultivated under distinct agricultural practices in Argentina. A van Leeuw J Microb 107:575–588

    CAS  Article  Google Scholar 

  91. Verginer M, Leitner E, Berg G (2010) Production of volatile metabolites by grape-associated microorganisms. J Agric Food Chem 58:8344–8350

    CAS  Article  PubMed  Google Scholar 

  92. Vurro M, Bonciani B, Vannacci G (2010) Emerging infectious diseases of crop plants in developing countries: impact on agriculture and socio-economic consequences. Food Secur 2:113–132

    Article  Google Scholar 

  93. West E, Cother E, Steel C, Ash G (2010) The characterization and diversity of bacterial endophytes of grapevine. Can J Microbiol 56:209–216

    CAS  Article  PubMed  Google Scholar 

  94. Whipps J (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    CAS  Article  PubMed  Google Scholar 

  95. Whipps J, Hand P, Pink D, Bending G (2008) Phyllosphere microbiology with special reference to diversity and plant genotype. J Appl Microbiol 105:1744–1755

    CAS  Article  PubMed  Google Scholar 

  96. Yousaf S, Bulgari D, Bergna A, Pancher M, Quaglino F, Casati P, Campisano A (2014) Pyrosequencing detects human and animal pathogenic taxa in the grapevine endosphere. Front Microbiol 5:1–9

    Article  Google Scholar 

  97. Zarraonaindia I, Gilbert J (2014) Probing the microbial mysteries of wine. Microbe 9:442–447

    Google Scholar 

  98. Zarraonaindia I, Owens SM, Weisenhorn P, West K, Hampton-Marcell J, Lax S, Bokulich N, Mills D, Martin G, Taghavi S, Lelie D, Gilbert J (2015) The soil microbiome influences grapevine-associated microbiota. MBio 6:1–10

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work has been funded by FCT – “Fundação para a Ciência e Tecnologia” under the HoliWine project (Ref FCOMP-01-0124-FEDER-02741). Cátia Pinto is supported by a PhD grant from FCT with the reference FRH/BD/84197/2012.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ana Catarina Gomes.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest for this publication.

Additional information

Handling Editor: Francisco Carzola.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10526_2016_9725_MOESM1_ESM.xlsx

Supplementary table 1: General list of the bacterial communities associated with grapevine. General overview of the bacterial communities’ structure associated with grapevine and assessed using either independent or dependent- approach. The “X” at the independent or dependent-approach column indicates the methodology applied for the microbial community analysis, according to the mentioned study and “--“ indicates the lack of information available. *FD – Flavescence dorée. Supplementary material 1 (XLSX 12 kb)

10526_2016_9725_MOESM2_ESM.xlsx

Supplementary table 2: General list of the fungal communities associated with grapevine. General overview of the fungal communities’ structure associated with grapevine and assessed using either independent or dependent- approach. The “X” at the independent or dependent-approach column indicates the methodology applied for the microbial community analysis, according to the mentioned study and “--“ indicates the lack of information available. *FD – Flavescence dorée.. Supplementary material 2 (XLSX 11 kb)

10526_2016_9725_MOESM3_ESM.xlsx

Supplementary table 3: General overview of the effects of the viticulture managing practices on bacterial communities. Resume of the studies that analyse the effects of different viticulture management practices on bacterial communities. The “X” at the independent or dependent-approach column indicates the methodology applied for the microbial community analysis, according to the mentioned study and “--“ indicates the lack of information available. *IPM – Integrated Pest Management. Supplementary material 3 (XLSX 11 kb)

10526_2016_9725_MOESM4_ESM.xlsx

Supplementary table 4: General overview of the effects of the viticulture managing practices on fungal communities. Resume of the studies that analyse the effects of different viticulture management practices on fungal communities. The “X” at the independent or dependent-approach column indicates the methodology applied for the microbial community analysis, according to the mentioned study and “--“ indicates the lack of information available. *IPM – Integrated Pest Management. Supplementary material 4 (XLSX 11 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pinto, C., Gomes, A.C. Vitis vinifera microbiome: from basic research to technological development. BioControl 61, 243–256 (2016). https://doi.org/10.1007/s10526-016-9725-4

Download citation

Keywords

  • Biological control agents
  • Plant microbiome
  • Grapevine microbiome