Skip to main content

Laboratory odour-specificity testing of Cotesia urabae to assess potential risks to non-target species

Abstract

The larval parasitoid Cotesia urabae Austin and Allen (Hymenoptera: Braconidae) is known to be attracted to odours of its target host Uraba lugens Walker (Lepidoptera: Nolidae), host plant (Eucalyptus species), and target plant-host complex. Cotesia urabae females were tested in both a Y-tube and four-arm olfactometer to further investigate these attractions as well as their attraction to three non-target Lepidoptera (two in the family Erebidae and one in the family Geometridae), and their corresponding host plants and plant-host complexes. In a Y-tube olfactometer, wasps were attracted to the odours of the non-target Erebidae larvae when tested on their own and when feeding on their host plants, but not to their non-target host plants alone, suggesting some rare circumstances in the field these non-targets could be attacked by C. urabae. The multiple-comparison bioassay conducted in a four-arm olfactometer indicates that target plant-host complex odours invariably produced the strongest attraction compared with any other of the non-target plant-host complex odours tested. Cotesia urabae females that were given prior exposure and the opportunity to oviposit within either non-target species were not subsequently more attracted to the Erebidae odours, suggesting that associative learning is unlikely to increase non-target attack. Such olfactometer assays could be a very useful addition to the host specificity testing methods able to be conducted within quarantine facilities, prior to the release of candidate biological control agents. We urge other biocontrol scientists to undertake similar assays to assist with non-target risk assessments.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Agelopoulos N, Keller M (1994) Plant- natural enemy association in tritrophic system, Cotesia rubeculaPieris rapaeBrassicaceae (Cruciferae). III: collection and identification of plant and frass volatiles. J Chem Ecol 20:1955–1967

    CAS  Article  PubMed  Google Scholar 

  • Allen GR (1990) Uraba lugens Walker (Lepidoptera: Noctuidae): Larval survival and parasitoid biology in the field in South Australia. J Aust Entomol Soc 29:301–312

    Article  Google Scholar 

  • Avila GA, Berndt LA, Holwell GI (2013) First releases and monitoring of the biological control agent Cotesia urabae Austin and Allen (Hymenoptera: Braconidae). N Z Entomol 36:65–72

    Article  Google Scholar 

  • Avila GA, Withers TM, Holwell GI (2016) Olfactory cues used in host-habitat location and host location by the parasitoid Cotesia urabae (Hymenoptera: Braconidae). Entomol Exp Appl. doi:10.1111/eea.12393

    Google Scholar 

  • Avila GA, Withers TM, Holwell GI (2015) Host testing of the parasitoid Cotesia urabae (Austin & Allen, 1989) (Hymenoptera: Braconidae) to assess the risk posed to the New Zealand nolid moth Celama parvitis (Howes, 1917) (Lepidoptera: Nolidae): do host deprivation and experience influence acceptance of non-target hosts? Aust Entomol 54:270–277

    Article  Google Scholar 

  • Bai S-X, Wang Z-Y, He K-L, Im D-J (2011) Olfactory response of Trichogramma ostriniae (Hymenoptera: Trichogrammatidae) to volatiles emitted by mungbean plants. Agric Sci China 10:560–565

    CAS  Article  Google Scholar 

  • Berndt L, Brockerhoff EG, Jactel H, Weiss T, Beaton J (2004) Biology and rearing of Pseudocoremia suavis, an endemic looper (Lepidoptera: Geometridae) with a history of outbreaks on exotic conifers. N Z Entomol 27:73–82

    Article  Google Scholar 

  • Berndt LA, Allen GR (2010) Biology and pest status of Uraba lugens Walker (Lepidoptera: Nolidae) in Australia and New Zealand. Aust J Entomol 49:268–277

    Article  Google Scholar 

  • Berndt LA, Sharpe A, Withers TM, Kimberley M, Gresham B (2010) Evaluation & review report for the release of Cotesia urabae for the biological control of gum leaf skeletoniser. Application ER-AF-NOR-1-2 09/05. Appendix 2: risks to non-target species from potential biological control agent Cotesia urabae against Uraba lugens in New Zealand. http://www.epa.govt.nz/search-databases/HSNO%20Application%20Register%20Documents/Application%20Appendix%202.pdf. Accessed 05 Sept 2015

  • Berndt LA, Mansfield S, Withers TM (2007) A method for host range testing of a biological control agent for Uraba lugens. N Z Plant Prot 60:286–290

    Google Scholar 

  • Berndt LA, Withers TM, Mansfield S, Hoare RJB (2009) Non-target species selection for host range testing of Cotesia urabae. N Z Plant Prot 62:168–173

    Google Scholar 

  • Berry JA, Walker GP (2004) Meteorus pulchricornis (Wesmael) (Hymenoptera: Braconidae: Euphorinae): An exotic polyphagous parasitoid in New Zealand. N Z J Zool 31:33–44

    Article  Google Scholar 

  • Cameron E (1935) A study of the natural control of ragwort (Senecio jacobaea L.). J Ecol 23:265–322

    Article  Google Scholar 

  • Cameron PJ, Walker GP (1997) Host specificity of Cotesia rubecula and Cotesia plutellae, parasitoids of white butterfly and diamondback moth. In: Proceedings of the 50th New Zealand plant protection conference, Lincoln University, Canterbury, New Zealand, pp 236–241

  • Cameron PJ, Walker GP, Keller MA (1997) Clearwater JR Host specificity assessments of Cotesia plutellae, a parasitoid of diamondback moth. In: Sivapragasam A, Loke WH, Hussan AK, Lim GS (eds) The management of diamondback moth and other crucifer pests: Proceedings of the third international workshop. Kuala Lumpur, Malaysia, pp 85–89

    Google Scholar 

  • Chinwada P, Schulthess F, Overholt W, Jowah P, Omwega C (2008) Release and establishment of Cotesia flavipes for biological control of maize stemborers in Zimbabwe. Phytoparasitica 36:160–167

    Article  Google Scholar 

  • Conover WJ (1999) Practical nonparametric statistics, 3rd edn. Wiley, New York

    Google Scholar 

  • Conti E, Salerno G, Bin F, Bradleigh Vinson S (2004) The role of host semiochemicals in parasitoid specificity: a case study with Trissolcus brochymenae and Trissolcus simoni on pentatomid bugs. Biol Control 29:435–444

    CAS  Article  Google Scholar 

  • Cugala D, Overholt W, Santos L, Giga D (2001) Release of Cotesia flavipes Cameron for biological control of cereal stemborers in two ecological zones in Mozambique. Insect Sci Appl 21:303–310

    Google Scholar 

  • Dicke M, Baarlen P, Wessels R, Dijkman H (1993) Herbivory induces systemic production of plant volatiles that attract predators of the herbivore: extraction of endogenous elicitor. J Chem Ecol 19:581–599

    CAS  Article  PubMed  Google Scholar 

  • Drost YC, Carde RT (1992) Host switching in Brachymeria intermedia (Hymenoptera: Chalcididae), a pupal endoparasitoid of Lymantria dispar (Lepidoptera: Lymantriidae). Environ Entomol 21:760–766

    Article  Google Scholar 

  • El-Wakeil N, Farghaly H, Ragab Z (2010) Efficacy of inundative releases of Trichogramma evanescens in controlling Lobesia botrana in vineyards in Egypt. J Pest Sci 83:379

    Article  Google Scholar 

  • Godfray HCJ (1994) Parasitoids: behavioral and evolutionary ecology. Princeton University Press, Princeton

    Google Scholar 

  • Jembere B, Ngi-Song AJ, Overholt W (2003) Olfactory responses of Cotesia flavipes (Hymenoptera: Braconidae) to target and non- target Lepidoptera and their host plants. Biol Control 28:360–367

    Article  Google Scholar 

  • Martin NA (2009) Plant-SyNZ™: an invertebrate herbivore biodiversity assessment tool. Landcare Research. http://plant-synz.landcareresearch.co.nz/DetailsForm.aspx?Type=H&RecordId=2463&LSID=NAM52459. Accessed 05 June 2015

  • Munro VMW, Henderson IM (2002) Nontarget effect of entomophagous biocontrol: shared parasitism between native lepidopteran parasitoids and the biocontrol agent Trigonospila brevifacies (Diptera: Tachinidae) in forest habitats. Environ Entomol 31:388–396

    Article  Google Scholar 

  • Ngi-Song A, Overholt W, Njagi P, Dicke M, Ayertey J, Lwande W (1996) Volatile infochemicals used in host and host habitat location by Cotesia flavipes (Cameron) and Cotesia sesamiae (Cameron) (Hymenoptera: Braconidae), larval parasitoids of stemborers on graminae. J Chem Ecol 22:307–323

    CAS  Article  PubMed  Google Scholar 

  • Ngi-Song AJ, Overholt WA (1997) Host location and acceptance by Cotesia flavipes Cameron and Cotesia sesamiae (Cameron) (Hymenoptera: Braconidae), parasitoids of african gramineous stemborers: role of frass and other host cues. Biol Control 9:136–142

    Article  Google Scholar 

  • Nordlund DA, Lewis WJ, Altieri MA (1988) Influence of plant produced allelochemicals on host-prey selection behavior of entomophagous insects. In: Barbosa P, Letourneau DK (eds) Novel aspects of insect-plant interaction. Wiley, New York, pp 65–90

    Google Scholar 

  • Obonyo M, Schulthess F, Le Ru B, van den Berg J, Silvain J-F, Calatayud P-A (2010) Importance of contact chemical cues in host recognition and acceptance by the braconid larval endoparasitoids Cotesia sesamiae and Cotesia flavipes. Biol Control 54:270–275

    Article  Google Scholar 

  • Orr DB, Garcia-Salazar C, Landis DA (2000) Trichogramma nontarget impacts: a method for biological control risk assessment. In: Follett PA, Duan JJ (eds) Nontarget effects of biological control. Kluwer Academic Publishers, Boston, pp 111–125

    Chapter  Google Scholar 

  • Perfecto I, Vet L (2003) Effect of a nonhost plant on the location behavior of two parasitoids: the tritrophic system of Cotesia spp. (Hymenoptera: Braconidae), Pieris rapae (Lepidoptera: Pieridae), and Brassica oleraceae. Environ Entomol 32:163–174

    Article  Google Scholar 

  • Péter A (2014) Solomon Coder (version beta 14.10.04): A simple solution and free solution for behavior coding. http://www.solomoncoder.com/. Accessed 09 Nov 2014

  • Quinn GP, Keough MJ (2002) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Romeis J, Shanower T, Zebitz C (1997) Volatile plant infochemicals mediate plant preference of Trichogramma chilonis. J Chem Ecol 23:2455–2465

    CAS  Article  Google Scholar 

  • Roux O, Gers C, Tene-Ghomsi J, Arvanitakis L, Bordat D, Legal L (2007) Chemical characterization of contact semiochemicals for host-recognition and host-acceptance by the specialist parasitoid Cotesia plutellae (Kurdjumov). Chemoecology 17:13–18

    CAS  Article  Google Scholar 

  • Rowbottom R, Allen G, Walker P, Berndt L (2013) Phenology, synchrony and host range of the Tasmanian population of Cotesia urabae introduced into New Zealand for the biocontrol of Uraba lugens. BioControl 58:625–633

    Article  Google Scholar 

  • Singh P, Mabbett F (1976) Note on the life history of the magpie moth, Nyctemera annulata (Lepidoptera: Arctiidae). N Z J Zool 3:277–278

    Article  Google Scholar 

  • Sullivan JJ, Winks CJ, Fowler SV (2008) Novel host associations and habitats for Senecio-specialist herbivorous insects in Auckland. N Z Ecol Soc 32:219–224

    Google Scholar 

  • Tumlinson JH, Lewis WJ, Vet LEM (1993) Parasitic wasps, chemically guided intelligent foragers. Sci Am 268:100–106

    CAS  Article  Google Scholar 

  • Turlings T, Tumlinson J, Eller F, Lewis W (1991) Larval-damaged plants: source of volatile synomones that guide the parasitoid Cotesia marginiventris to the micro-habitat of its hosts. Entomol Exp Appl 58:75–82

    Article  Google Scholar 

  • Turlings TC, Tumlinson JH (1992) Systemic release of chemical signals by herbivore-injured corn. PNAS 89:8399–8402

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Turlings TCJ, Tumlinson JH, Lewis WJ (1990) Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps. Science 250:1251–1253

    CAS  Article  PubMed  Google Scholar 

  • Turlings TCJ, Wackers FL (2004) Recruitment of predators and parasitoids by herbivore-injured plants. In: Cardé RT, Millar JG (eds) Advances in insect chemical ecology. Cambridge University Press, Cambridge, pp 21–75

    Chapter  Google Scholar 

  • Turlings TCJ, Wackers FL, Vet LEM, Lewis WJ, Tumlinson JH (1993) Learning of host-finding cues by hymenopterous parasitoids. In: Papaj DR, Lewis AC (eds) Insect learning: ecological and evolutionary perspectives, vol 3. Chapman & Hall, New York, pp 51–78

    Chapter  Google Scholar 

  • van Driesche R, Nunn C, Kreke N, Goldstein B, Benson J (2003) Laboratory and field host preferences of introduced Cotesia spp. parasitoids (Hymenoptera: Braconidae) between native and invasive Pieris butterflies. Biol Control 28:214–221

    Article  Google Scholar 

  • van Lenteren JC, Bale J, Bigler F, Hokkanen HMT, Loomans AJM (2006) Assessing risks of releasing exotic biological control agents of arthropod pests. Ann Rev Entomol 51:609–634

    Article  Google Scholar 

  • van Poecke RMP, Roosjen M, Pumarino L, Dicke M (2003) Attraction of the specialist parasitoid Cotesia rubecula to Arabidopsis thaliana infested by host or non-host herbivore species. Entomol Exp Appl 107:229–236

    Article  Google Scholar 

  • Vet LEM, Dicke M (1992) Ecology of infochemical use by natural enemies in a tritrophic context. Ann Rev Entomol 37:141–172

    Article  Google Scholar 

  • Vet LEM, van Lenteren JC, Heymans M, Meelis E (1983) An airflow olfactometer for measuring olfactory responses of hymenopterous parasitoids and other small insects. Physiol Entomol 8:97–106

    Article  Google Scholar 

  • Vet LEM, Lewis WJ, Carde RT (1995) Parasitoid foraging and learning. In: Carde RT, Bell WJ (eds) Chemical ecology of insects, vol 2. Chapman & Hall, New York, pp 65–101

    Chapter  Google Scholar 

  • Vet LEM, Wäckers FL, Dicke M (1991) How to hunt for hiding hosts: the reliability-detectability problem in foraging parasitoids. Neth J Zool 41:202–213

    Article  Google Scholar 

  • Vinson SB (1984) Parasitoid-host relationship. In: Bell WJ, Cardé RT (eds) Chemical ecology of insects. Chapman & Hall, London, pp 206–233

    Google Scholar 

  • Vinson SB (1998) The general host selection behavior of parasitoid Hymenoptera and a comparison of initial strategies utilized by larvaphagous and oophagous species. Biol Control 11:79–96

    Article  Google Scholar 

  • Xiaoyi W, Zhongqi Y (2008) Behavioral mechanisms of parasitic wasps for searching concealed insect hosts. Acta Ecol Sin 28:1257–1269

    Article  Google Scholar 

  • Yong T-H, Pitcher S, Gardner J, Hoffmann M (2007) Odor specificity testing in the assessment of efficacy and non-target risk for Trichogramma ostriniae (Hymenoptera: Trichogrammatidae). Biocontrol Sci Tech 17:135–153

    Article  Google Scholar 

  • Zahiri R, Kitching IJ, Lafontaine JD, Mutanen M, Kaila L, Holloway JD, Wahlberg N (2010) A new molecular phylogeny offers hope for a stable family level classification of the Noctuoidea (Lepidoptera). Zool Scr 40:158–173

    Google Scholar 

Download references

Acknowledgments

Thanks to Maria Saavedra and Nicky Kerr who assisted with the rearing of the Cotesia urabae colony, and also to Anne Barrington (Plant and Food Research) and Lindsay McIntyre for supplying non-target species larvae for this research project. This work was partly funded by Scion as part of the Better Border Biosecurity (B3) (http://www.b3nz.org) research collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonzalo A. Avila.

Additional information

Handling Editor: Stefano Colazza.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Avila, G.A., Withers, T.M. & Holwell, G.I. Laboratory odour-specificity testing of Cotesia urabae to assess potential risks to non-target species. BioControl 61, 365–377 (2016). https://doi.org/10.1007/s10526-016-9716-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-016-9716-5

Keywords

  • Braconidae
  • Endoparasitoid
  • Olfactometer
  • Ecological host range
  • Host specificity testing
  • Infochemicals