Impact of the omic technologies for understanding the modes of action of biological control agents against plant pathogens

Abstract

The characterization of microbial biological control agents (MBCAs) is crucial to improve their efficacy and consistency as biopesticides. Powerful approaches to characterize MBCA’s modes of action are provided by modern molecular technologies. This paper reviews improvements achieved in this subject by three “omics” approaches: namely the genomic, the transcriptomic and the proteomic approaches. The paper discusses the advantages and drawbacks of new molecular techniques and ‘discovery driven’ approaches to the study of the biocontrol properties against plant pathogens. Omics technologies are capable of: (i) identifying the genome, transcriptome or proteome features of an MBCA strain, (ii) comparing properties of strains/mutants with different biocontrol efficacy, (iii) identifying and characterizing genes, mRNAs and proteins involved in MBCA modes of action, and (iv) simultaneously studying the transcriptome or proteome of the plant host, the plant pathogen and the MBCAs in relation to their bi- or tri-trophic interactions.

This is a preview of subscription content, access via your institution.

References

  1. Adomas A, Eklund M, Johansson M, Asiegbu FO (2006) Identification and analysis of differentially expressed cDNAs during nonself-competitive interaction between Phlebiopsis gigantea and Heterobasidion parviporum. FEMS Microbiol Ecol 57:26–39

    CAS  PubMed  Google Scholar 

  2. Aegerter BJ, Gordon TR (2006) Rates of pitch canker induced seedling mortality among Pinus radiata families varying in levels of genetic resistance to Gibberella circinata (anamorph Fusarium circinatum). For Ecol Manag 235:14–17

    Google Scholar 

  3. Alfano G, Ivey ML, Cakir C, Bos JI, Miller SA, Madden LV, Kamoun S, Hoitink HA (2007) Systemic modulation of gene expression in tomato by Trichoderma hamatum 382. Phytopathology 97:429–437

    CAS  PubMed  Google Scholar 

  4. Armengaud J (2013) Microbiology and proteomics, getting the best of both worlds! Environ Microbiol 15:12–23

    CAS  PubMed  Google Scholar 

  5. Bachmann B, van Lanen S, Baltz R (2014) Microbial genome mining for accelerated natural products discovery: is a renaissance in the making? J Ind Microbiol Biotechnol 41:175–184

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Barret M, Frey-Klett P, Boutin M, Guillerm-Erckelboudt AY, Martin F, Guillot L, Sarniguet A (2009a) The plant pathogenic fungus Gaeumannomyces graminis var. tritici improves bacterial growth and triggers early gene regulations in the biocontrol strain Pseudomonas fluorescens Pf29Arp. New Phytol 181:435–447

    CAS  PubMed  Google Scholar 

  7. Barret M, Frey-Klett P, Guillerm-Erckelboudt AY, Boutin M, Guernec G, Sarniguet A (2009b) Effect of wheat roots infected with the pathogenic fungus Gaeumannomyces graminis var. tritici on gene expression of the biocontrol bacterium Pseudomonas fluorescens Pf29Arp. Mol Plant Microbe Interact 22:1611–1623

    CAS  PubMed  Google Scholar 

  8. Baysal Ö, Lai D, Xu HH, Siragusa M, Çalışkan M, Carimi F, da Silva JAT, Tör M (2013) A proteomic approach provides new insights into the control of soil-borne plant pathogens by Bacillus species. PLoS ONE 8:e53182

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Bernhardt J, Völker U, Völker A, Antelmann H, Schmid R, Mach H, Hecker M (1997) Specific and general stress proteins in Bacillus subtilis—a two-dimensional protein electrophoresis study. Microbiology 143:999–1017

    CAS  PubMed  Google Scholar 

  10. Brotman Y, Briff E, Viterbo A, Chet I (2008) Role of swollenin, an expansin-like protein from Trichoderma, in plant root colonization. Plant Physiol 147:779–789

    PubMed Central  CAS  PubMed  Google Scholar 

  11. Brown SD, Utturkar SM, Klingeman DM, Johnson CM, Martin SL, Land ML, Lu TS, Schadt CW, Doktycz MJ, Pelletiera DA (2012) Twenty-one genome sequences from pseudomonas species and 19 genome sequences from diverse bacteria isolated from the rhizosphere and endosphere of Populus deltoides. J Bacteriol 194:5991–5993

    PubMed Central  CAS  PubMed  Google Scholar 

  12. Buensanteai N, Yuen GY, Prathuangwong S (2008) The biocontrol bacterium Bacillus amyloliquefaciens KPS46 produces auxin, surfactin and extracellular proteins for enhanced growth of soybean plant. Thai J Agric Sci 41:111–116

    Google Scholar 

  13. Challis GL (2008) Mining microbial genomes for new natural products and biosynthetic pathways. Microbiology 154:1555–1569

    CAS  PubMed  Google Scholar 

  14. Chen XH, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I, Morgenstern B, Voss B, Hess WR, Reva O, Junge H, Voigt B, Jungblut PR, Vater J, Süssmuth R, Liesegang H, Strittmatter A, Gottschalk G, Borriss R (2007) Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol 25:1007–1014

    CAS  PubMed  Google Scholar 

  15. Chen W, Yunsheng W, Dingjun L, Lin L, Qiming X, Qingming Z (2012) Draft genome sequence of Brevibacillus brevis strain X23, a biocontrol agent against bacterial wilt. J Bacteriol 194:6634–6635

    PubMed Central  CAS  PubMed  Google Scholar 

  16. Cheng C-H, Yang C-A, Peng K-C (2012) Antagonism of Trichoderma harzianum ETS 323 on Botrytis cinerea mycelium in culture conditions. Phytopathology 102:1054–1063

  17. Czajkowski R, van der Wolfa JM (2012) Draft genome sequence of the biocontrol strain Serratia plymuthica A30, isolated from rotting potato tuber tissue. J Bacteriol 194:6999–7000

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Daly DS, Anderson KK, Panisko EA, Purvine SO, Fang R, Monroe ME, Baker SE (2008) Mixed-effects statistical model for comparative LC–MS proteomics studies. J Proteome Res 7:1209–1217

    CAS  PubMed  Google Scholar 

  19. Daval S, Lebreton L, Gazengel K, Boutin M, Guillerm-Erckelboudt AY, Sarniguet A (2011) The biocontrol bacterium Pseudomonas fluorescens Pf29Arp strain affects the pathogenesis-related gene expression of the take-all fungus Gaeumannomyces graminis var. tritici on wheat roots. Mol Plant Pathol 12:839–854

    PubMed Central  CAS  PubMed  Google Scholar 

  20. De Las RJ, Aibar S, Roson B (2014) Gene expression analysis and profiling of microarrays data and RNA-sequencing data. In: Cifuentes A, Simó C, Virginia GC (eds) Comprehensive analytical chemistry, vol 63. Elsevier, Oxford, UK, pp 355–384

    Google Scholar 

  21. Eyiwumi Olorunleke F, Phuong Kieu N, Höfte M (2015) Recent advances in pseudomonas biocontrol pp. In: Murillo J, Vinatzer B, Jackson R, Arnold D (eds) Bacteria-plant interactions: advanced research and future trends. Caister Academic Press, Wymondham, UK, pp 167–198

    Google Scholar 

  22. Faraji M, Ahmadzadeh M, Behboudi K, Okhovvat SM, Ruocco M, Lorito M, Rezaei-Tavirani M, Zali H (2013) Study of proteome pattern of Pseudomonas fluorescens strain UTPF68 in interaction with Trichoderma atroviride strain P1 and tomato. J Paramed Sci 4:30–44

    Google Scholar 

  23. Feng DX, Tasset C, Hanemian M, Barlet X, Hu J, Trémousaygue D, Deslandes L, Marco Y (2012) Biological control of bacterial wilt in Arabidopsis thaliana involves abscissic acid signalling. New Phytol 194:1035–1045

    CAS  PubMed  Google Scholar 

  24. Gil C, Monteoliva L (2014) Trends in microbial proteomics. J Proteomics 97:1–2

    CAS  PubMed  Google Scholar 

  25. Grevesse C, Lepoivre P, Jijakli MH (2003) Characterization of the exoglucanase-encoding gene PaEXG2 and study of its role in the biocontrol activity of Pichia anomala strain K. Phytopathology 93:1145–1152

    CAS  PubMed  Google Scholar 

  26. Grinyer J, McKay M, Herbert B, Nevalainen H (2004a) Fungal proteomics: mapping the mitochondrial proteins of a Trichoderma harzianum strain applied for biological control. Curr Genet 45:170–175

    CAS  PubMed  Google Scholar 

  27. Grinyer J, McKay M, Nevalainen H, Herbert B (2004b) Fungal proteomics: initial mapping of biological control strain Trichoderma harzianum. Curr Genet 45:163–169

    CAS  PubMed  Google Scholar 

  28. Grinyer J, Hunt S, McKay M, Herbert B, Nevalainen H (2005) Proteomic response of the biological control fungus Trichoderma atroviride to growth on the cell walls of Rhizoctonia solani. Curr Genet 47:381–388

    CAS  PubMed  Google Scholar 

  29. Grinyer J, Kautto L, Traini M, Willows R, Te’o J, Bergquist P, Nevalainen H (2007) Proteome mapping of the Trichoderma reesei 20S proteasome. Curr Genet 51:79–88

    CAS  PubMed  Google Scholar 

  30. Hammami W, Chain F, Michaud D, Belanger R (2010) Proteomic analysis of the metabolic adaptation of the biocontrol agent Pseudozyma flocculosa leading to glycolipid production. Proteome Sci 8:7

    PubMed Central  PubMed  Google Scholar 

  31. Hao K, He P, Blom J, Rueckert C, Mao Z, Wu Y, He Y, Borriss R (2012) The genome of plant growth-promoting Bacillus amyloliquefaciens subsp. plantarum Strain YAU B9601-Y2 contains a gene cluster for mersacidin synthesis. J Bacteriol 194:3264–3265

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Hassan KA, Johnson A, Shaffer BT, Ren Q, Kidarsa TA, Elbourne LDH, Hartney S, Duboy R, Goebel NC, Zabriskie TM, Paulsen IT, Lope JE (2010) Inactivation of the GacA response regulator in Pseudomonas fluorescens Pf-5 has far-reaching transcriptomic consequences. Environ Microbiol 12:899–915

    CAS  PubMed  Google Scholar 

  33. Helsens K., Colaert N, Barsnes H, Muth T, Flikka K, Staes A, Timmerman E, Wortelkamp S, Sickmann A, Vandekerckhove J, Gevaert K, Martens L (2010) Ms_lims, a simple yet powerful open source laboratory information management system for MS-driven proteomics. Proteomics 10:1261–1264

  34. Hermosa RL, Woo S, Lorito M, Monte E (2010) Proteomic approaches to understand Trichoderma biocontrol mechanisms and plant interactions. Curr Proteomics 7:298–305

    CAS  Google Scholar 

  35. Hershkovitz V, Ben-Dayan C, Raphael G, Pasmanik-Chor M, Liu J, Belausov E, Aly R, Wisniewski M, Droby S (2012) Global changes in gene expression of grapefruit peel tissue in response to the yeast biocontrol agent Metschnikowia fructicola. Mol Plant Pathol 13:338–349

    CAS  PubMed  Google Scholar 

  36. Hershkovitz V, Sela N, Taha-Salaime L, Liu J, Rafael G, Kessler C, Aly R, Levy M, Wisniewski M, Droby S (2013) De-novo assembly and characterization of the transcriptome of Metschnikowia fructicola reveals differences in gene expression following interaction with Penicillium digitatum and grapefruit peel. BMC Genom 14:168

    CAS  Google Scholar 

  37. Illakkiam D, Shankar M, Ponraj P, Rajendhran J, Gunasekaran P (2014) Genome sequencing of a mung bean plant growth promoting strain of P. aeruginosa with biocontrol ability. Int J Genomics. doi:10.1155/2014/123058

  38. Jiang F, Zheng X, Chen J (2009) Microarray analysis of gene expression profile induced by the biocontrol yeast Cryptococcus laurentii in cherry tomato fruit. Gene 430:12–16

    PubMed  Google Scholar 

  39. Jijakli MH, Lepoivre P (1998) Characterization of an exo-β-1,3-glucanase produced by Pichia anomala strain K, antagonist of Botrytis cinerea on apples. Phytopathology 88:335–343

    CAS  PubMed  Google Scholar 

  40. Kandasamy S, Loganathan K, Muthuraj R, Duraisamy S, Seetharaman S, Thiruvengadam R, Ponnusamy B, Ramasamy S (2009) Understanding the molecular basis of plant growth promotional effect of Pseudomonas fluorescens on rice through protein profiling. Proteome Sci 7:1–8

    Google Scholar 

  41. Kanehisa M, Goto S, Kawashima S, Nakaya A (2002) The KEGG databases at GenomeNet. Nucleic Acids Res 30:42–46

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Kierul K, Voigt B, Albrecht D, Chen XH, Carvalhais LC, Borriss R (2015) Influence of root exudates on the extracellular proteome of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Microbiology 161:131–147

    CAS  PubMed  Google Scholar 

  43. Kim HJ, Park JY, Han SH, Lee JH, Rong X, McSpadden Gardener BB, Park SK, Kim YC (2011) Draft genome sequence of the biocontrol bacterium Chromobacterium sp. strain C-61. J Bacteriol 193:6803–6804

    PubMed Central  CAS  PubMed  Google Scholar 

  44. Klaponski N, Selin C, Duke K, Spicer V, Fernando D, Belmonte M, de Kievit T (2014) The requirement for the LysR-type regulator PtrA for Pseudomonas chlororaphis PA23 biocontrol revealed through proteomic and phenotypic analysis. BMC Microbiol 14:94

    PubMed Central  PubMed  Google Scholar 

  45. Knief C (2014) Analysis of plant microbe interactions in the era of next generation sequencing technologies. Front Plant Sci. 5:216

    PubMed Central  PubMed  Google Scholar 

  46. Kubicek CP, Herrera-Estrella A, Seidl-Seiboth V, Martinez DA, Druzhinina IS, Thon M, Zeilinger S, Casas-Flores S, Horwitz BA, Mukherjee PK, Mukherjee M, Kredics L, Alcaraz LD, Aerts A, Antal Z, Atanasova L, Cervantes-Badillo MG, Challacombe J, Chertkov O, McCluskey K, Coulpier F, Deshpande N, von Döhren H, Ebbole DJ, Esquivel-Naranjo EU, Fekete E, Flipphi M, Glaser F, Gómez-Rodríguez EY, Gruber S, Han C, Henrissat B, Hermosa R, Hernández-Oñate M, Karaffa L, Kosti I, Le Crom S, Lindquist E, Lucas S, Lübeck M, Lübeck PS, Margeot A, Metz B, Misra M, Nevalainen H, Omann M, Packer N, Perrone G, Uresti-Rivera EE, Salamov A, Schmoll M, Seiboth B, Shapiro H, Sukno S, Tamayo-Ramos JA, Tisch D, Wiest A, Wilkinson HH, Zhang M, Coutinho PM, Kenerley CM, Monte E, Baker SE, Grigoriev IV (2011) Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. Genome Biol 12:R40

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Kwasiborski A, Bajji M, Renaut J, Delaplace P, Jijakli MH (2014) Identification of metabolic pathways expressed by Pichia anomala Kh6 in the presence of the pathogen Botrytis cinerea on apple: new possible targets for biocontrol improvement. PLoS ONE 9:e91434

    PubMed Central  PubMed  Google Scholar 

  48. Lee SY, Kim BY, Ahn JH, Song J, Seol YJ, Kim WG, Weon HY (2012) Draft genome sequence of the biocontrol bacterium Bacillus amyloliquefaciens strain M27. J Bacteriol 194:6934–6935

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Lefebvre F, Joly DL, Labbé C, Teichmann B, Linning R, Belzile F, Bakkeren G, Bélanger RR (2013) The transition from a phytopathogenic smut ancestor to an anamorphic biocontrol agent deciphered by comparative whole-genome analysis. Plant Cell 25:1946–1959

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Lim CK, Hassan KA, Tetu SG, Loper JE, Paulsen IT (2012) The effect of iron limitation on the transcriptome and proteome of Pseudomonas fluorescens Pf-5. PLoS ONE 7(6):e39139

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Lim JA, Lee DH, Kim BY, Heu S (2014) Draft genome sequence of Pantoea agglomerans R190, a producer of antibiotics against phytopathogens and foodborne pathogens. J Biotechnol 188:7–8

    CAS  PubMed  Google Scholar 

  52. Liu PG, Yang Q (2005) Identification of genes with a biocontrol function in Trichoderma harzianum mycelium using the expressed sequence tag approach. Res Microbiol 156:416–423

    CAS  PubMed  Google Scholar 

  53. Liu J, Zhou Q, Ibrahim M, Liu H, Jin G, Zhu B, Xie G (2012) Genome sequence of the biocontrol agent Microbacterium barkeri strain 2011-R4. J Bacteriol 194:6666–6667

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Loper JE, Hassan KA, Mavrodi DV, Davis EW, Lim CK, Shaffer BT, Elbourne LD, Stockwell VO, Hartney SL, Breakwell K, Henkels MD, Tetu SG, Rangel LI, Kidarsa TA, Wilson NL, van de Mortel JE, Song C, Blumhagen R, Radune D, Hostetler JB, Brinkac LM, Durkin AS, Kluepfel DA, Wechter WP, Anderson AJ, Kim YC, Pierson LS III, Pierson EA, Lindow SE, Kobayashi DY, Raaijmakers JM, Weller DM, Thomashow LS, Allen AE, Paulsen IT (2012) Comparative genomics of plant-associated Pseudomonas spp.: insights into diversity and inheritance of traits involved in multitrophic interactions. PLoS Genet 8:e1002784

    PubMed Central  CAS  PubMed  Google Scholar 

  55. Lorito M, Woo SL, Harman GE, Monte E (2010) Translational research on Trichoderma: from ‘omics to the field. Annu Rev Phytopathol 48:395–417

    CAS  PubMed  Google Scholar 

  56. Marra R, Ambrosino P, Carbone V, Vinale F, Woo S, Ruocco M, Ciliento R, Lanzuise S, Ferraioli S, Soriente I, Gigante S, Turrà D, Fogliano V, Scala F, Lorito M (2006) Study of the three-way interaction between Trichoderma atroviride, plant and fungal pathogens by using a proteomic approach. Curr Genet 50:307–321

    CAS  PubMed  Google Scholar 

  57. Martinez-Garcia P, Ruano-Rosa D, Schiliro E, Prieto P, Ramos C, Rodriguez-Palenzuela P, Mercado-Blanco J (2015) Complete genome sequence of Pseudomonas fluorescens strain PICF7, an indigenous root endophyte from olive (Olea europaea L.) and effective biocontrol agent against Verticillium dahliae. Stand Genomic Sci 10:10

    PubMed Central  PubMed  Google Scholar 

  58. Massart S, Jijakli MH (2006) Identification of differentially expressed genes by cDNA-amplified fragment length polymorphism in the biocontrol agent Pichia anomala (strain Kh5). Phytopathology 96:80–86

    CAS  PubMed  Google Scholar 

  59. Massart S, Jijakli HM (2007) Use of molecular techniques to elucidate the mechanisms of action of fungal biocontrol agents: a review. J Microbiol Methods 69:229–241

    CAS  PubMed  Google Scholar 

  60. Massart S, Martinez-Medina M, Jijakli MH (2015) Biological control in the microbiome era: challenges and opportunities. Biol control 89: 98–108

  61. Mathimaran N, Srivastava R, Wiemken A, Sharma AK, Boller T (2012) Genome sequences of two plant growth-promoting fluorescent Pseudomonas strains, R62 and R81. J Bacteriol 194:3272–3273

    PubMed Central  CAS  PubMed  Google Scholar 

  62. McGettigan PA (2013) Transcriptomics in the RNA-seq era. Curr Opin Chem Biol 17:4–11

    CAS  PubMed  Google Scholar 

  63. Mesuere B, Devreese B, Debyser G, Aerts M, Vandamme P, Dawyndt P (2012) Unipept: tryptic peptide-based biodiversity analysis of metaproteome samples. J Proteome Res 11:5773–5780

  64. Mgbeahuruike AC, Kohler A, Asiegbu FO (2013) Expression analysis of the impact of culture filtrates from the biocontrol agent, Phlebiopsis gigantea on the conifer pathogen, Heterobasidion annosum s.s. transcriptome. Microb Ecol 66:669–681

    CAS  PubMed  Google Scholar 

  65. Monteiro V, Nascimento Silva R, Steindorff A, Costa F, Noronha E, Ricart C, Sousa M, Vainstein M, Ulhoa C (2010) New insights in Trichoderma harzianum antagonism of fungal plant pathogens by secreted protein analysis. Curr Microbiol 61:298–305

    CAS  PubMed  Google Scholar 

  66. Montero-Barrientos M, Hermosa R, Cardoza RE, Gutiérrez S, Monte E (2011) Functional analysis of the Trichoderma harzianum nox1 gene, encoding an NADPH oxidase, relates production of reactive oxygen species to specific biocontrol activity against Pythium ultimum. Appl Environ Microbiol 77:3009–3016

    PubMed Central  CAS  PubMed  Google Scholar 

  67. Morán-Diez E, Hermosa R, Ambrosino P, Cardoza RE, Gutiérrez S, Lorito M, Monte E (2009) The ThPG1 endopolygalacturonase is required for the Trichoderma harzianum–plant beneficial interaction. Mol Plant Microbe Interact 22:1021–1031

    PubMed  Google Scholar 

  68. Morán-Diez E, Rubio B, Domínguez S, Hermosa R, Monte E, Nicolás C (2012) Transcriptomic response of Arabidopsis thaliana after 24 h incubation with the biocontrol fungus Trichoderma harzianum. J Plant Physiol 169:614–620

    PubMed  Google Scholar 

  69. Moretti M, Grunau A, Minerdi D, Gehrig P, Roschitzki B, Eberl L, Garibaldi A, Gullino ML, Riedel K (2010) A proteomics approach to study synergistic and antagonistic interactions of the fungal–bacterial consortium Fusarium oxysporum wild-type MSA 35. Proteomics 10:3292–3320

    CAS  PubMed  Google Scholar 

  70. Mukherjee PK, Horwitz BA, Herrera-Estrella A, Schmoll M, Kenerley CM (2013) Trichoderma research in the genome era. Annu Rev Phytopathol 51:105–129

    CAS  PubMed  Google Scholar 

  71. Niu B, Rueckert C, Blom J, Wang Q, Borriss R (2011) The genome of the plant growth-promoting rhizobacterium Paenibacillus polymyxa M-1 contains nine sites dedicated to nonribosomal synthesis of lipopeptides and polyketides. J Bacteriol 193:5862–5863

    PubMed Central  CAS  PubMed  Google Scholar 

  72. Nookaew I, Papini M, Pornputtpong N, Scalcinati G, Fagerberg L, Uhlén M, Nielsen J (2012) A comprehensive comparison of RNA-Seq-based transcriptome analysis from reads to differential gene expression and cross-comparison with microarrays: a case study in Saccharomyces cerevisiae. Nucleic Acids Res 40:10084–10097

    PubMed Central  CAS  PubMed  Google Scholar 

  73. Okubara PA, Call DR, Kwak YS, Skinner DZ (2010) Induction of defense gene homologues in wheat roots during interactions with Pseudomonas fluorescens. Biol Control 55:118–125

    CAS  Google Scholar 

  74. Otto A, Bernhardt J, Hecker M, Becher D (2012) Global relative and absolute quantitation in microbial proteomics. Curr Opin Microbiol 15:364–372

    CAS  PubMed  Google Scholar 

  75. Otto A, Becher D, Schmidt F (2014) Quantitative proteomics in the field of microbiology. Proteomics 14:547–565

    CAS  PubMed  Google Scholar 

  76. Oudenhove L, Devreese B (2013) A review on recent developments in mass spectrometry instrumentation and quantitative tools advancing bacterial proteomics. Appl Microbiol Biotechnol 97:4749–4762

    CAS  PubMed  Google Scholar 

  77. Palmieri MC, Perazzolli M, Matafora V, Moretto M, Bachi A, Pertot I (2012) Proteomic analysis of grapevine resistance induced by Trichoderma harzianum T39 reveals specific defence pathways activated against downy mildew. J Exp Bot 63:6237–6251

    PubMed Central  CAS  PubMed  Google Scholar 

  78. Park JY, Han SH, Lee JH, Han YS, Lee YS, Rong X, McSpadden Gardener BB, Park HS, Kim YC (2011) Draft genome sequence of the biocontrol bacterium Pseudomonas putida B001, an oligotrophic bacterium that induces systemic resistance to plant diseases. J Bacteriol 193:6795–6796

    PubMed Central  CAS  PubMed  Google Scholar 

  79. Paul D, Dineshkumar N, Nair S (2006) Proteomics of a plant growth-promoting rhizobacterium, Pseudomonas fluorescens MSP-393, subjected to salt shock. World J Microbiol Biotechnol 22:369–374

    CAS  Google Scholar 

  80. Paulsen IT, Press CM, Ravel J, Kobayashi DY, Myers GSA, Mavrodi DV, DeBoy RT, Seshadri R, Ren Q, Madupu R, Dodson RJ, Durkin AS, Brinkac LM, Daugherty SC, Sullivan SA, Rosovitz MJ, Gwinn ML, Zhou L, Schneider DJ, Cartinhour SW, Nelson WC, Weidman J, Watkins K, Tran K, Khouri H, Pierson EA, Pierson LS 3rd, Thomashow LS, Loper JE (2005) Complete genome sequence of the plant commensal Pseudomonas fluorescens Pf-5. Nat Biotechnol 23:873–878

    CAS  PubMed  Google Scholar 

  81. Perazzolli M, Moretto M, Fontana P, Ferrarini A, Velasco R, Moser C, Delledonne M, Pertot I (2012) Downy mildew resistance induced by Trichoderma harzianum T39 in susceptible grapevines partially mimics transcriptional changes of resistant genotypes. BMC Genom 13:660

    CAS  Google Scholar 

  82. Puopolo G, Cimmino A, Palmieri MC, Giovannini O, Evidente A, Pertot I (2014) Lysobacter capsici AZ78 produces cyclo(L-Pro-L-Tyr), a 2,5-diketopiperazine with toxic activity against sporangia of Phytophthora infestans and Plasmopara viticola. J Appl Microbiol 117:1168–1180

    CAS  PubMed  Google Scholar 

  83. Redondo-Nieto M, Barret M, Morrissey J, Germaine K, Martínez-Granero F, Barahona E, Navazo A, Sánchez-Contreras M, Moynihan JA, Muriel C, Dowling D, O’Gara F, Martín M, Rivilla R (2013) Genome sequence reveals that Pseudomonas fluorescens F113 possesses a large and diverse array of systems for rhizosphere function and host interaction. BMC Genom 14:54

    CAS  Google Scholar 

  84. Reithner B, Ibarra-Laclette E, Mach RL, Herrera-Estrella A (2011) Identification of mycoparasitism-related genes in Trichoderma atroviride. Appl Environ Microbiol 77:4361–4370

    PubMed Central  CAS  PubMed  Google Scholar 

  85. Rong X, Gurel FB, Meulia T, Gardener BBM (2012a) Draft genome sequences of the biocontrol bacterium Mitsuaria sp. strain H24L5A. J Bacteriol 194:734–735

    PubMed Central  CAS  PubMed  Google Scholar 

  86. Rong X, Gurel FB, Meulia T, McSpadden Gardener BB (2012b) Draft genome sequences of the Pseudomonas fluorescens biocontrol strains Wayne1R and Wood1R. J Bacteriol 194:724–725

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Rubio M, Quijada NM, Pérez E, Domínguez S, Monte E, Hermosa R (2014) Identifying beneficial qualities of Trichoderma parareesei for plants. Appl Environ Microbiol 80:1864–1873

    PubMed Central  PubMed  Google Scholar 

  88. Sánchez-Arreguín A, Pérez-Martínez AS, Herrera-Estrella A (2012) Proteomic analysis of Trichoderma atroviride reveals independent roles for transcription factors BLR-1 and BLR-2 in light and darkness. Eukaryot Cell 11:30–41

    PubMed Central  PubMed  Google Scholar 

  89. Schmid R, Bernhardt J, Antelmann H, Völker A, Mach H, Völker U, Hecker M (1997) Identification of vegetative proteins for a two-dimensional protein index of Bacillus subtilis. Microbiology 143:991–998

    CAS  PubMed  Google Scholar 

  90. Segarra G, Casanova E, Bellido D, Odena MA, Oliveira E, Trillas I (2007) Proteome, salicylic acid, and jasmonic acid changes in cucumber plants inoculated with Trichoderma asperellum strain T34. Proteomics 7:3943–3952

    CAS  PubMed  Google Scholar 

  91. Seidl V, Marchetti M, Schandl R, Allmaier G, Kubicek CP (2006) Epl1, the major secreted protein of Hypocrea atroviridis on glucose, is a member of a strongly conserved protein family comprising plant defense response elicitors. FEBS J 273:4346–4359

    CAS  PubMed  Google Scholar 

  92. Seidl V, Song L, Lindquist E, Gruber S, Koptchinskiy A, Zeilinger S, Schmoll M, Martínez P, Sun J, Grigoriev I, Herrera-Estrella A, Baker SE, Kubicek CP (2009) Transcriptomic response of the mycoparasitic fungus Trichoderma atroviride to the presence of a fungal prey. BMC Genom 10:567

    Google Scholar 

  93. Sharma S, Aggarwal R, Yadav A, Gupta S (2014) Protein mapping of Chaetomium globosum, a potential biological control agent through proteomics approach. J Plant Biochem Biotechnol 23:284–292

    CAS  Google Scholar 

  94. Shen X, Chen M, Hu H, Wang W, Peng H, Xu P, Zhang X (2012) Genome sequence of Pseudomonas chlororaphis GP72, a root-colonizing biocontrol strain. J Bacteriol 194:1269–1270

    PubMed Central  CAS  PubMed  Google Scholar 

  95. Shentu XP, Liu WP, Zhan XH, Xu YP, Xu JF, Yu XP, Zhang CX (2014) Transcriptome sequencing and gene expression analysis of Trichoderma brevicompactum under different culture conditions. PLoS ONE 9:e94203

    PubMed Central  PubMed  Google Scholar 

  96. Shoresh M, Harman GE (2008a) The molecular basis of shoot responses of maize seedlings to Trichoderma harzianum T22 inoculation of the root: a proteomic approach. Plant Physiol 147:2147–2163

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Shoresh M, Harman GE (2008b) The relationship between increased growth and resistance induced in plants by root colonizing microbes. Plant Signal Behav 3:737–739

    PubMed Central  PubMed  Google Scholar 

  98. Smits THM, Rezzonico F, Kamber T, Goesmann A, Ishimaru CA, Stockwell VO, Frey JE, Duffy B (2010) Genome sequence of the biocontrol agent Pantoea vagans strain C9-1. J Bacteriol 192:6486–6487

    PubMed Central  CAS  PubMed  Google Scholar 

  99. Song JY, Kwak MJ, Lee KY, Kong HG, Kim BK, Kwon SK, Lee SW, Kim JF (2012) Draft genome sequence of the antifungal-producing plant-benefiting bacterium Burkholderia pyrrocinia CH-67. J Bacteriol 194:6649–6650

    PubMed Central  CAS  PubMed  Google Scholar 

  100. Studholme DJ, Harris B, Le Cocq K, Winsbury R, Perera V, Ryder L, Ward JL, Beale MH, Thornton CR, Grant M (2013) Investigating the beneficial traits of Trichoderma hamatum GD12 for sustainable agriculture-insights from genomics. Front Plant Sci. 4:258

    PubMed Central  PubMed  Google Scholar 

  101. Suárez MB, Sanz L, Chamorro MI, Rey M, González FJ, Llobell A, Monte E (2005) Proteomic analysis of secreted proteins from Trichoderma harzianum: identification of a fungal cell wall-induced aspartic protease. Fungal Genet Biol 42:924–934

    PubMed  Google Scholar 

  102. Sun H, Paulin L, Alatalo E, Asiegbu FO (2011) Response of living tissues of Pinus sylvestris to the saprotrophic biocontrol fungus Phlebiopsis gigantea. Tree Physiol 31:438–451

    PubMed  Google Scholar 

  103. Takeuchi K, Noda N, Someya N (2014) Complete genome sequence of the biocontrol strain Pseudomonas protegens Cab57 discovered in Japan reveals strain-specific diversity of this species. PLoS ONE 9:e93683

    PubMed Central  PubMed  Google Scholar 

  104. Tang J, Liu L, Huang X, Li Y, Chen Y, Chen J (2010) Proteomic analysis of Trichoderma atroviride mycelia stressed by organophosphate pesticide dichlorvos. Can J Microbiol 56:121–127

    CAS  PubMed  Google Scholar 

  105. Trushina N, Levin M, Mukherjee PK, Horwitz BA (2013) PacC and pH-dependent transcriptome of the mycotrophic fungus Trichoderma virens. BMC Genom 14:138

    CAS  Google Scholar 

  106. Tseng SC, Liu SY, Yang HH, Lo CT, Peng KC (2008) Proteomic study of biocontrol mechanisms of Trichoderma harzianum ETS 323 in response to Rhizoctonia solani. J Agric Food Chem 56:6914–6922

    CAS  PubMed  Google Scholar 

  107. Ujor VC, Peiris DG, Monti M, Kang AS, Clements MO, Hedger JN (2012) Quantitative proteomic analysis of the response of the wood-rot fungus, Schizophyllum commune, to the biocontrol fungus, Trichoderma viride. Lett Appl Microbiol 54:336–343

    CAS  PubMed  Google Scholar 

  108. Vilanova L, Wisniewski M, Norelli J, Viñas I, Torres R, Usall J, Phillips J, Droby S, Teixidó N (2014) Transcriptomic profiling of apple in response to inoculation with a pathogen (Penicillium expansum) and a non-pathogen (Penicillium digitatum). Plant Mol Biol Rep 32:566–583

    CAS  Google Scholar 

  109. Viterbo A, Harel M, Chet I (2004) Isolation of two aspartyl proteases from Trichoderma asperellum expressed during colonization of cucumber roots. FEMS Microbiol Lett 238:151–158

    CAS  PubMed  Google Scholar 

  110. Wilkins MR, Sanchez JC, Gooley AA, Appel RD, HumpherySmith I, Hochstrasser DF, Williams KL (1995) Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotechnol Genet Eng Rev 13:19–50

    Google Scholar 

  111. Wöhlbrand L, Trautwein K, Rabus R (2013) Proteomic tools for environmental microbiology—a roadmap from sample preparation to protein identification and quantification. Proteomics 13:2700–2730

    PubMed  Google Scholar 

  112. Wu DQ, Ye J, Ou HY, Wei X, Huang X, He YW, Xu Y (2011) Genomic analysis and temperature-dependent transcriptome profiles of the rhizosphere originating strain Pseudomonas aeruginosa M18. BMC Genom 12:438

    CAS  Google Scholar 

  113. Yang HH, Yang SL, Peng KC, Lo CT, Liu SY (2009) Induced proteome of Trichoderma harzianum by Botrytis cinerea. Mycol Res 113:924–932

    CAS  PubMed  Google Scholar 

  114. Zhang CX, Zhao X, Han F, Yang MF, Chen H, Chida T, Shen SH (2009) Comparative proteome analysis of two antagonist Bacillus subtilis strains. J Microbiol Biotechnol 19:351–357

    CAS  PubMed  Google Scholar 

  115. Zhang C, Zhang X, Shen S (2014) Proteome analysis for antifungal effects of Bacillus subtilis KB-1122 on Magnaporthe grisea P131. World J Microbiol Biotechnol 30:1763–1774

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors apologize to the scientists that are not cited because of space limitation. Michele Perazzolli and Ilaria Pertot were partially supported by the INNOVA project (Subprogramme: FP7-PEOPLE-2012-IAPP, Project reference: 324416).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sebastien Massart.

Additional information

Handling Editor: Jesus Mercado Blanco.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Massart, S., Perazzolli, M., Höfte, M. et al. Impact of the omic technologies for understanding the modes of action of biological control agents against plant pathogens. BioControl 60, 725–746 (2015). https://doi.org/10.1007/s10526-015-9686-z

Download citation

Keywords

  • Biological control
  • Omics
  • Genomics
  • Transcriptomics
  • Proteomics
  • Biocontrol agent