BioControl

, Volume 60, Issue 5, pp 583–594 | Cite as

Non-target host risk assessment for the parasitoid Torymus sinensis

  • Chiara Ferracini
  • Ester Ferrari
  • Matteo Alessandro Saladini
  • Marianna Pontini
  • Marida Corradetti
  • Alberto Alma
Article

Abstract

Torymus sinensis Kamijo (Hymenoptera: Torymidae) has been released throughout Italy for biological control of the chestnut gall wasp. In response to concern about non-target impacts associated with the introduction of this exotic biological control agent, this study aimed at investigating T. sinensis’s host range. In total, 1371 non-target galls were collected in north-central Italy in a two-year period, representing nine different species. Collections were carried out on common oak, downy oak, sessile oak, Turkey oak, and wild rose. A total of five native torymid species were recorded from the non-target galls (Megastigmus dorsalis, Torymus affinis, T. auratus, T. flavipes, and T. geranii), and three ♂♂ T. sinensis individuals emerged from Biorhiza pallida galls collected in the field. Under controlled conditions, most of the non-target galls tested were not suitable hosts for oviposition. T. sinensis females only laid eggs on Andricus curvator. In olfactometer bioassays, higher numbers of T. sinensis females showed more interest to the chestnut galls compared to non-target hosts. This data highlights how T. sinensis has a broader ecological host range than reported in the literature and that it is attracted by non-target hosts other than D. kuriphilus.

Keywords

Torymus sinensis Risk assessment Host specificity Chestnut gall Oak gall 

Notes

Acknowledgments

We wish to thank Johann Laimer who kindly provided the unparasitised chestnut galls used in the behavioural trials, and Ivo Poli for helping during the field activity. We are also grateful to Cecilia Ferrara, Federica Fleury, Lindsay Hernández Nova, Greta Pastorino, Cristina Pogolotti, and Valentina Tosi for their technical assistance.

References

  1. Aebi A, Schönenberger N, Melika G, Quacchia A, Alma A, Stone GN (2007) Native and introduced parasitoids attacking the invasive chestnut gall wasp Dryocosmus kuriphilus. EPPO Bull 37:166–171CrossRefGoogle Scholar
  2. Aebi A, Schönenberger N, Bigler F (2011) Evaluating the use of Torymus sinensis against the chestnut gall wasp Dryocosmus kuriphilus in Canton Ticino, Switzerland. Agroscope Reckenholz-Tänikon Report, p 71Google Scholar
  3. Alma A, Ferracini C, Sartor C, Ferrari E, Botta R (2014) Il cinipide orientale del castagno: lotta biologica e sensibilità varietale. Italus Hortus 21(3):15–29Google Scholar
  4. Andreassen LD, Kuhlmann U, Mason PG, Holliday NJ (2009) Host range testing of a prospective classical biological control agent against cabbage maggot, Delia radicum, in Canada. Biol Control 48:210–220CrossRefGoogle Scholar
  5. Battisti A, Benvegnù I, Colombari F, Haack RA (2014) Invasion by the chestnut gall wasp in Italy causes significant yield loss in Castanea sativa nut production. Agric Forest Entomol 16:75–79CrossRefGoogle Scholar
  6. Borowiec N, Thaon M, Brancaccio L, Warot S, Vercken E, Fauvergue X, Ris N, Malausa JC (2014) Classical biological control against the chestnut gall wasp Dryocosmus kuriphilus (Hymenoptera, Cynipidae) in France. Plant Prot Q 29(1):7–10Google Scholar
  7. Bosio G, Armando M, Moriya S (2013) Verso il controllo biologico del cinipide del castagno. Inftore Agrario 4(14):60–64Google Scholar
  8. Brodeur J (2012) Host specificity in biological control: insights from opportunistic pathogens. Evol Appl 5:470–480PubMedCentralCrossRefPubMedGoogle Scholar
  9. Cooper WR, Rieske LK (2007) Community associates of an exotic gallmaker, Dryocosmus kuriphilus (Hymenoptera: Cynipidae), in Eastern North America. Ann Entomol Soc Am 100(2):236–244CrossRefGoogle Scholar
  10. de Vere Graham MWR, Gijswijt MJ (1998) Revision of the European species of Torymus Dalman (s. Lat.) (Hymenoptera: Torymidae). Zool Verh Leiden 317:1–202Google Scholar
  11. EFSA Panel on Plant Health (PLH) (2010) Risk assessment of the oriental chestnut gall wasp, Dryocosmus kuriphilus for the EU territory on request from the European Commission. EFSA J 8:1619Google Scholar
  12. Ferracini C, Ingegno BL, Navone P, Ferrari E, Mosti M, Tavella L, Alma A (2012) Adaptation of indigenous larval parasitoids to Tuta absoluta (Lepidoptera: Gelechiidae) in Italy. J Econ Entomol 105:1311–1319CrossRefPubMedGoogle Scholar
  13. Ferracini C, Gonella E, Ferrari E, Saladini MA, Picciau L, Tota F, Pontini M, Alma A (2015) Novel insight in the life cycle of Torymus sinensis, biocontrol agent of the chestnut gall wasp. BioControl 60:169–177CrossRefGoogle Scholar
  14. Gibbs M, Schönrogge K, Alma A, Melika G, Quacchia A, Stone GN, Aebi A (2011) Torymus sinensis: a viable management option for the biological control of Dryocosmus kuriphilus in Europe? BioControl 56:527–538CrossRefGoogle Scholar
  15. Haye T, Goulet H, Mason PG, Kuhlmann U (2005) Does fundamental host range match ecological host range? A retrospective case study of a Lygus plant bug parasitoid. Biol Control 35:55–67CrossRefGoogle Scholar
  16. Heimpel GE, Ragsdale DW, Venette R, Hopper KR, O’Neil RJ, Rutledge CE, Wu Z (2004) Prospects for importation biological control of the soybean aphid: anticipating potential costs and benefits. Ann Entomol Soc Am 97(2):249–258CrossRefGoogle Scholar
  17. Howarth FG (1991) Environmental impacts of classical biological control. Annu Rev Entomol 36:485–509CrossRefGoogle Scholar
  18. Kaartinen R, Stone GN, Hearn J, Lohse K, Roslin T (2010) Revealing secret liaisons: DNA barcoding changes our understanding of food webs. Ecol Entomol 35:623–638CrossRefGoogle Scholar
  19. Kamijo K (1982) Two new species of Torymus (Hymenoptera, Torymidae) reared from Dryocosmus kuriphilus (Hymenoptera, Cynipidae) in China and Korea. Kontyû 50:505–510Google Scholar
  20. Kuhlmann U, Schaffner U, Mason PG (2006) Selection of non-target species for host-specificity testing. In: Bigler F, Babendreier D, Kuhlmann U (eds) Environmental impact of invertebrates for biological control of arthropods: methods and risk assessment. CABI Publishing, Wallingford, UK, pp 15–37CrossRefGoogle Scholar
  21. López-Vaamonde C, Moore D (1998) Developing methods for testing host specificity of Phymastichus coffea LaSalle (Hym.: Tetrastichinae), a potential biological control agent of Hypothenemus hampei (Ferrari) (Col.: Scolytidae) in Colombia. Biocontrol Sci Technol 8(3):397–411CrossRefGoogle Scholar
  22. Mason PG, Broadbent AB, Whistlecraft JW, Gillespie DR (2011) Interpreting the host range of Peristenus digoneutis and Peristenus relictus (Hymenoptera: Braconidae) biological control agents of Lygus spp. (Hemiptera: Miridae) in North America. Biol Control 57:94–102CrossRefGoogle Scholar
  23. McEvoy PB (1996) Host specificity and biological pest control. BioSci 46(6):401–405CrossRefGoogle Scholar
  24. Moeed A, Hickson R, Barratt BIP (2006) Principles of environmental risk assessment with emphasis on the New Zealand perspective. In: Bigler F, Babendreier D, Kuhlmann U (eds) Environmental impact of invertebrates for biological control of arthropods: methods and risk assessment. CABI Publishing, Wallingford, pp 241–253Google Scholar
  25. Moriya S, Inoue K, Mabuchi M (1989a) The use of Torymus sinensis to control chestnut gall wasp, Dryocosmus kuriphilus, in Japan. Tech Bull Food Fertlizer Tech Cent 118:1–12Google Scholar
  26. Moriya S, Inoue K, Ôtake A, Shiga M, Mabuchi M (1989b) Decline of the chestnut gall wasp population, Dryocosmus kuriphilus Yasumatsu (Hymenoptera: Cynipidae) after the establishment of Torymus sinensis Kamijo (Hymenoptera: Torymidae). Appl Entomol Zool 24:231–233Google Scholar
  27. Moriya S, Shiga M, Adachi I (2003) Classical biological control of the chestnut gall wasp in Japan. In: van Driesche RG (ed) Proceedings of the 1st international symposium on biological control of arthropods. USDA Forest Service, Washington, DC, USA, pp 407–415Google Scholar
  28. Murakami Y, Umeya K, Oho N (1977) A preliminary introduction and released of a parasitoid (Chalcidoidea, Torymidae) of the chestnut gall wasp Dryocosmus kuriphilus Yasumatsu. Jpn J Appl Entomol Zool 21:197–203CrossRefGoogle Scholar
  29. Nadel H, Daane KM, Hoelmer KA, Pickett CH, Johnson MW (2009) Non-target host risk assessment of the idiobiont parasitoid Bracon celer (Hymenoptera: Braconidae) for biological control of olive fruit fly in California. Biocontrol Sci Technol 19(7):701–715CrossRefGoogle Scholar
  30. Onstad DW, McManus ML (1996) Risks of host range expansion by parasites of insects. BioSci 46(6):430–435CrossRefGoogle Scholar
  31. Quacchia A, Moriya S, Bosio G, Scapin G, Alma A (2008) Rearing, release and settlement prospect in Italy of Torymus sinensis, the biological control agent of the chestnut gall wasp Dryocosmus kuriphilus. BioControl 53:829–839CrossRefGoogle Scholar
  32. Quacchia A, Ferracini C, Nicholls JA, Piazza E, Saladini MA, Tota F, Melika G, Alma A (2013) Chalcid parasitoid community associated with the invading pest Dryocosmus kuriphilus in north-western Italy. Insect Conserv Diver 6(2):114–123CrossRefGoogle Scholar
  33. Quacchia A, Moriya S, Askew R, Schönrogge K (2014) Torymus sinensis: biology, host range and hybridization. Acta Hortic 1043:105–111Google Scholar
  34. Strand MR, Obricky JJ (1996) Host specificity of insect parasitoids and predators. BioSci 46(6):422–429CrossRefGoogle Scholar
  35. van Driesche RG, Murray TJ (2004) Overview of testing schemes and designs used to estimate host ranges. In: van Driesche RG, Murray T, Reardon R (eds) Assessing host ranges of parasitoids and predators used for classical biological control: a guide to best practice. Forest Health Technology Enterprise Team, Morgantown, USA, pp 68–89Google Scholar
  36. van Lenteren JC, Bale J, Bigler F, Hokkanen HMT, Loomans AJM (2006) Assessing risks of releasing exotic biological control agents of arthropod pests. Annu Rev Entomol 51:609–634CrossRefPubMedGoogle Scholar
  37. Withers TM, Brown LB (2005) Behavioral and physiological processes affecting outcomes of host range testing. In: van Driesche RG, Murray T, Reardon R (eds) Assessing host ranges of parasitoids and predators used for classical biological control: a guide to best practice. Forest Health Technology Enterprise Team, Morgantown, USA, pp 40–55Google Scholar
  38. Wyckhuys KAG, Koch RL, Kula RR, Heimpel GE (2009) Potential exposure of a classical biological control agent of the soybean aphid, Aphis glycines, on non-target aphids in North America. Biol Invasions 11:857–871CrossRefGoogle Scholar

Copyright information

© International Organization for Biological Control (IOBC) 2015

Authors and Affiliations

  • Chiara Ferracini
    • 1
  • Ester Ferrari
    • 1
  • Matteo Alessandro Saladini
    • 1
  • Marianna Pontini
    • 1
  • Marida Corradetti
    • 1
  • Alberto Alma
    • 1
  1. 1.Department of Agricultural, Forest and Food Sciences (DISAFA)University of TorinoGrugliascoItaly

Personalised recommendations