Biological control of Verticillium wilt of olive by Paenibacillus alvei, strain K165

Abstract

In the present study, the efficiency of the biocontrol agent Paenibacillus alvei (strain K165) to suppress Verticillium wilt of olive tree was evaluated in greenhouse and field experiments. In planta bioassays were conducted under greenhouse conditions and revealed that K165 significantly decreased symptoms on the susceptible cultivar ‘Amfissis’ by 44.5 and 51.6 % of the final disease severity index and relative area under disease progress curve (AUDPC), respectively. Thereafter, the suppressive effect of K165 against Verticillium dahliae was studied for two consecutive years (2007 and 2008) in a newly established olive orchard of the susceptible cv Amfissis and the resistant cv Kalamon, naturally infested with V. dahliae. The evaluation of K165 was carried out by recording symptoms, isolations and qPCR quantification of the pathogen in olive tissues. In both years, ‘Amfissis’ trees treated with K165 showed significantly lower final disease severity and relative AUDPC values compared to the non treated controls, whereas, in 2008 decreased symptom severity was associated with significantly lower V. dahliae DNA levels in plant tissues, indicating the suppressive effect of the biocontrol agent. However, no significant suppression was observed in ‘Kalamon’. Pathogen isolations along with qPCR quantification revealed a seasonal fluctuation of V. dahliae biomass in olive tissues with higher amounts occurring in May, and lower amounts in February, August and November. This is the first report of biological control of Verticillium wilt of olive tree under field conditions, associated with reduced pathogen levels inside the xylem tissues.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Alabouvette C, Olivain C, Migheli Q, Steinberg C (2009) Microbiological control of soil-borne phytopathogenic fungi with special emphasis on wilt-inducing Fusarium oxysporum. New Phytol 184:529–544

    CAS  Article  PubMed  Google Scholar 

  2. Antoniou PP, Markakis EA, Tjamos SE, Paplomatas EJ, Tjamos EC (2008) Novel methodologies in screening and selecting olive varieties and root-stocks for resistance to Verticillium dahliae. Eur J Plant Pathol 122:549–560

    Article  Google Scholar 

  3. Antonopoulos DF, Tjamos SE, Antoniou PP, Rafeletos P, Tjamos EC (2008) Effect of Paenibacillus alvei, strain K165, on the germination of Verticillium dahliae microsclerotia in planta. Biol Control 46:166–170

    Article  Google Scholar 

  4. Ausher R, Katan J, Ovadia S (1975) An improved selective medium for the isolation of Verticillium dahliae. Phytoparasitica 3:133–137

    Article  Google Scholar 

  5. Berg G, Fritze A, Roskot N, Smalla K (2001) Evaluation of potential biocontrol rhizobacteria from different host plants of Verticillum dahliae Kleb. J Appl Mycol 91:963–971

    CAS  Google Scholar 

  6. Berg G, Zachow C, Lottmann J, Gotz M, Costa R, Smalla K (2005) Impact of plant species and site on rhizosphere-associated fungi antagonistic to Verticillium dahliae Kleb. Appl Environ Microbiol 71:4203–4213

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Bubici G, Cirruli M (2014) Natural recovery from Verticillium wilt in olive: can it be exploited in a control strategy? Plant Soil 381:85–94

    CAS  Article  Google Scholar 

  8. Butterfield EJ, DeVay JE (1977) Reassessment of soil assays for Verticillium dahliae. Phytopathology 67:1073–1078

    Article  Google Scholar 

  9. Campbell CL, Madden LV (1990) Introduction to plant disease epidemiology. Wiley, New York

    Google Scholar 

  10. Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version 2. Plant Mol Biol Rep 1:19–21

    CAS  Article  Google Scholar 

  11. El-Zik KM (1985) Integrated control of Verticillium wilt of cotton. Plant Dis 69:1025–1032

    Article  Google Scholar 

  12. FAO (2012) Food and Agriculture Organization of the United Nations. http://www.fao.org/corp/statistics/en/. Accessed Jan 2015

  13. Gómez-Lama Cabanás C, Schiliro E, Valverde-Corredor A, Mercado-Blanco J (2014) The biocontrol endophytic bacterium Pseudomonas fluorescens PICF7 induces systemic defense responses in aerial tissues upon colonization of olive roots. Front Microbiol 5:1–14

    Google Scholar 

  14. Harris RF, Sommers LE (1968) Plate-dilution frequency technique for assay of microbial ecology. Appl Microbiol 16:330–334

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Hawke MA, Lazarovits G (1994) Production and manipulation of individual microsclerotia of Verticillium dahliae for use in studies of survival. Phytopathology 84:883–890

    Article  Google Scholar 

  16. Heinz R, Lee SW, Saparno A, Nazar RN, Robb J (1998) Cyclical systemic colonization in Verticillium-infected tomato. Physiol Mol Plant Pathol 52:385–396

    Article  Google Scholar 

  17. Jimenez-Diaz RM, Cirulli M, Bubici G, Jimenez-Gasco MM, Antoniou PP, Tjamos EC (2012) Verticillium wilt, a major threat to olive production: current status and future prospects for its management. Plant Dis 96:304–329

    Article  Google Scholar 

  18. Levin AG, Lavee S, Tsror L (2003) Epidemiology of Verticillium dahliae on olive (cv. Picual) and its effect on yield under saline conditions. Plant Pathol 52:212–218

    Article  Google Scholar 

  19. Lopez-Escudero FJ, Blanco-Lopez MA (2005) Recovery of young olive trees from Verticillium dahliae. Eur J Plant Pathol 113:367–375

    Article  Google Scholar 

  20. Lopez-Escudero FJ, Blanco-Lopez MA (2007) Relationship between the inoculum density of Verticillium dahliae and the progress of Verticillium wilt of olive. Plant Dis 91:1372–1378

    Article  Google Scholar 

  21. Lopez-Escudero FJ, Mercado-Blanco J (2011) Verticillium wilt of olive: a case study to implement an integrated strategy to control a soil-borne pathogen. Plant Soil 344:1–50

    CAS  Article  Google Scholar 

  22. Lopez-Escudero FJ, Del Rio C, Caballero JM, Blanco-Lopez MA (2004) Evaluation of olive cultivars for resistance to Verticillium dahliae. Eur J Plant Pathol 110:79–85

    Article  Google Scholar 

  23. Lopez-Escudero FJ, Mercado-Blanco J, Roca JM, Valverde-Corredor A, Blanco-Lopez MA (2010) Verticillium wilt of olive in the Guadalquivir valley (southern Spain): relations with some agronomical factors and spread of Verticillium dahliae. Phytopathol Mediterr 49:370–380

    Google Scholar 

  24. Markakis EA, Tjamos SE, Chatzipavlidis I, Antoniou PP, Paplomatas EJ (2008) Evaluation of compost amendments for control of vascular wilt diseases. J Phytopathol 156:622–627

    Article  Google Scholar 

  25. Markakis EA, Tjamos SE, Antoniou PP, Paplomatas EJ, Tjamos EC (2009) Symptom development, pathogen isolation and real-time QPCR quantification as factors for evaluating the resistance of olive cultivars to Verticillium pathotypes. Eur J Plant Pathol 124:603–611

    CAS  Article  Google Scholar 

  26. Markakis EA, Tjamos SE, Antoniou PP, Paplomatas EJ, Tjamos EC (2010) Phenolic responses of resistant and susceptible olive cultivars induced by defoliating and non defoliating Verticillium dahliae pathotypes. Plant Dis 94:1156–1162

    CAS  Article  Google Scholar 

  27. Mercado-Blanco J (2012) Biological control of Verticillium wilt of olive within an integrated disease management framework. IOBC/WPRC Bull 79:149–154

    Google Scholar 

  28. Mercado-Blanco J, Rodriguez-Jurado D, Perez-Artes E, Jimenez-Diaz RM (2001) Detection of the nondefoliating pathotype of Verticillium dahliae in infected olive plants by nested PCR. Plant Pathol 50:609–619

    CAS  Article  Google Scholar 

  29. Mercado-Blanco J, Rodriguez-Jurado D, Perez-Artes E, Jimenez-Diaz RM (2002) Detection of the defoliating pathotype of Verticillium dahliae in infected olive plants by nested PCR. Eur J Plant Pathol 108:1–13

    CAS  Article  Google Scholar 

  30. Mercado-Blanco J, Collado-Romero M, Parrilla-Araujo S, Rodriguez-Jurado D, Jimenez-Diaz RM (2003) Quantitative monitoring of colonization of olive genotypes by Verticillium dahliae pathotypes with real-time polymerase chain reaction. Physiol Mol Plant Pathol 63:91–105

    CAS  Article  Google Scholar 

  31. Mercado-Blanco J, Rodriguez-Jurado D, Hervas A, Jimenez-Diaz RM (2004) Suppression of Verticillium wilt in olive planting stocks by root-associated fluorescent Pseudomonas spp. Biol Control 30:474–486

    Article  Google Scholar 

  32. Navas-Cortés JA, Landa BB, Mercado-Blanco J, Trapero-Casas JL, Rodríguez-Jurado D, Jiménez-Díaz RM (2008) Spatiotemporal analysis of spread of infections by Verticillium dahliae pathotypes within a high tree density olive orchard in southern Spain. Phytopathology 98:167–180

    Article  PubMed  Google Scholar 

  33. Prieto P, Navarro-Raya C, Valverde-Corredor A, Amyotte SG, Dobinson KF, Mercado-Blanco J (2009) Colonization process of olive tissues by Verticillium dahliae and its in planta interaction with the biocontrol root endophyte Pseudomonas fluorescens PICF7. Microb Biotechnol 2:499–511

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Sanei SJ, Razani SE (2011) Suppression of Verticillium wilt of olive by Pseudomonas fluorescens. Am J Exp Agric 1:294–305

    Article  Google Scholar 

  35. Snyder WC, Hansen HN, Wilhelm S (1950) New host of Verticillium albo-atrum. Plant Dis Rep 34:26–27

    Google Scholar 

  36. Tjamos EC (1993) Prospects and strategies in controlling Verticillium wilt of olive. OEPP/EPPO Bull 23:505–512

    Article  Google Scholar 

  37. Tjamos EC, Jimenez-Diaz RM (1998) Management of disease. In: Harris DC, Hiemstra JA (eds) A compendium of Verticillium wilt in trees species. Ponsen & Looijen, Wageningen, pp 55–57

    Google Scholar 

  38. Tjamos EC, Tsitsigiannis DI, Tjamos SE, Antoniou P, Katinakis P (2004) Selection and screening of endorhizosphere bacteria from solarized soils as biocontrol agents against Verticillium dahliae of solanaceous hosts. Eur J Plant Pathol 110:35–44

    CAS  Article  Google Scholar 

  39. Tjamos SE, Flemetakis E, Paplomatas EJ, Katinakis P (2005) Induction of resistance to Verticillium dahliae in Arabidopsis thaliana by the biocontrol agent K-165 and pathogenesis-related proteins gene expression. Mol Plant Microb Interact 18:555–561

    CAS  Article  Google Scholar 

  40. Tosi L, Zazzerini A (1998) Investigation on the epidemiology of Verticillium wilt in central Italy. Olivae 71:50–55

    Google Scholar 

  41. Trapero C, Serrano N, Arquero O, Del Río C, Trapero A, López-Escudero FJ (2013) Field resistance to Verticillium wilt in selected olive cultivars grown in two naturally infested soils. Plant Dis 97:668–674

    Article  Google Scholar 

  42. Wilhelm S (1955) Longevity of the Verticillium wilt fungus in the laboratory and field. Phytopathology 45:180–181

    Google Scholar 

  43. Wilhelm S, Taylor JB (1965) Control of Verticillium wilt of olive through natural recovery and resistance. Phytopathology 55:310–316

    Google Scholar 

Download references

Acknowledgments

We thank Anna Mastromina for English language editing.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Emmanouil A. Markakis.

Additional information

Handling Editor: Jesus Mercado Blanco.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Markakis, E.A., Tjamos, S.E., Antoniou, P.P. et al. Biological control of Verticillium wilt of olive by Paenibacillus alvei, strain K165. BioControl 61, 293–303 (2016). https://doi.org/10.1007/s10526-015-9669-0

Download citation

Keywords

  • Biological control
  • Olive
  • Suppression
  • Verticillium dahliae
  • Verticillium wilt