Advertisement

BioControl

, Volume 60, Issue 5, pp 703–713 | Cite as

Host range and impact of the stem- and leaf-deforming thrips, Liothrips tractabilis: a biological control agent for Campuloclinium macrocephalum, in South Africa

  • Andrew McConnachie
  • Fernando McKay
Article

Abstract

We report on the host range and impact of Liothrips tractabilis Mound and Pereyra (Thysanoptera: Phlaeothripinae), the first biological control agent to be considered for Campuloclinium macrocephalum (Less.) DC. (Asteraceae) (pompom weed) in South Africa. Laboratory host-range tests were conducted on 45 Asteraceae species. Field host range studies included 16 Asteraceae species. Results of both laboratory tests and field host range data indicated that L. tractabilis is suitably host specific to C. macrocephalum and hence safe for release in South Africa. Laboratory impact studies on both seedlings and regrowth showed that, even under low inoculation densities, L. tractabilis had a significant impact on plant height, number of leaves, flower production and biomass. Based on the above data, permission for the release of the thrips was applied for, and in June 2013, granted by South African authorities. First releases of L. tractabilis were made in the summer of 2013/2014, and in November 2014 its establishment was confirmed.

Keywords

Asteraceae Thysanoptera Phlaeothripinae Host-specificity testing Weed biological control Pompom weed 

Notes

Acknowledgments

We thank E. Richter, S. Sambo, M. Gareeb, D. Nkala, M. Yengwa, L. Khumalo and P. Mpedi of the Plant Protection Research Institute (PPRI) for technical assistance. S. Neser, L. van der Westhuizen, T. Olckers, J. Goodall, L. Henderson and H. Klein (PPRI) are thanked for their various inputs to the programme. Juan Briano (FUeDEI, Argentina) is thanked for contract and research facilitation. Financial support for this programme was provided by the Department of Environmental Affairs: Natural Resource Management Programme (DEA-NRMP), the Invasive Alien Species Programme of the KwaZulu-Natal Department of Agriculture, Environment and Rural Development, and the Agricultural Research Council of South Africa.

References

  1. Aileen JL (2005) The impact of the invasive plant, Campuloclinium macrocephalum (Less.) DC, on plant community structure in the Rietvlei Nature Reserve, Pretoria. Honours Research report GGY 702. Department of Geography, Geoinformatics and Meteorology, University of Pretoria, Pretoria, South AfricaGoogle Scholar
  2. Balciunas JK, Burrows DW, Purcell MF (1996) Comparison of the physiological and realized host-ranges of a biological control agent from Australia for the control of the aquatic weed Hydrilla verticillata. Biol Control 7:148–158Google Scholar
  3. Briese DT (2005) Translating host-specificity test results into the real world: the need to harmonize the yin and yang of current testing procedures. Biol Control 35:208–214CrossRefGoogle Scholar
  4. Cock MJW (1982) The biology and host specificity of Liothrips mikaniae (Priesner) (Thysanoptera: Phlaeothripidae), a potential biological control agent of Mikania micrantha (Compositae). Bull Entomol Res 72:523–533CrossRefGoogle Scholar
  5. Cook RP (2001) Specificity of Liothrips urichi (Thysanoptera: Phlaeothripidae) for Climedia hirta in American Samoa. Proc Hawaii Entomol Soc 35:143–144Google Scholar
  6. Cordo HC, Logarzo G, Braun K, Diiorio O (2004) Catálogo de Insectos Fitógagos de la Argentina y sus Plantas Asociadas. Sociedad Entomológica Argentina ediciones. Buenos Aires, pp 734Google Scholar
  7. Cullen JM (1990) Current problems in host-specificity screening. In: Delfosse ES (ed) Proceedings of the VII international symposium on biological control of Weeds. Istituto Sperimentale per la Patologia Vegetale Ministero dell’Agricoltura e delle Foreste, Rome, 6–11 March 1988, pp 27–36Google Scholar
  8. De Santis L (1950) Tres Tisanopteros nuevos de la República Argentina. Notas del Mus. del Plata. Zoologia 15:59–70Google Scholar
  9. Funk VA, Susanna A, Stuessy TF, Bayer RJ (eds.) (2009) Systematics, evolution and biogeography of compositae. International Association for Plant Taxonomy, ViennaGoogle Scholar
  10. Gitonga L, Cron GV, McConnachie A, Byrne MJ (2014) Genetic variation of the invasive Campuloclinium macrocephalum, Asteraceae in South Africa, inferred from molecular markers. Weed Res 55:51–61CrossRefGoogle Scholar
  11. Goodall JM, Witkowski ETF (2014) Testing the performance of registered herbicides on the control of Campuloclinium macrocephalum (Asteraceae) in South African grasslands. Weed Res 54(3):274–284CrossRefGoogle Scholar
  12. Goodall J, Witkowski ETF, Amman S, Reinhardt C (2010) Does allelopathy explain the invasiveness of Campuloclinium macrocephalum (pompom weed) in the South African grassland biome? Biol Invasions 12:3497–3512CrossRefGoogle Scholar
  13. Goodall J, Witkowski ETF, McConnachie AJ, Keen C (2012) Altered growth, population structure and realised niche of the weed, Campuloclinium macrocephalum (Asteraceae) after exposure to the naturalised rust Puccinia eupatorii (Pucciniaceae). Biol Invasions 14(9):1947–1962CrossRefGoogle Scholar
  14. Henderson L (2001) Alien weeds and invasive plants: a complete guide to declared weeds and invaders in South Africa. Plant Protection Research Institute Handbook No. 12. Agricultural Research Council, Pretoria, South AfricaGoogle Scholar
  15. Henderson L (ed.) (2010) A national plan of action for pompom weed. SAPIA News No. 15: 3Google Scholar
  16. Liebermann J, Gemignani EV (1931) Un Nuevo genero y dos nuevas especies de Thysanopteras argentines. Revista de la Sociedad Entomol. Argent. 3: 211–216Google Scholar
  17. McConnachie AJ, Retief E, Henderson L, McKay F (2011) The initiation of a biological control programme against pompom weed, Campuloclinium macrocephalum (Less.) DC. (Asteraceae), in South Africa. In: Moran VC, Hoffmann JH, Hill MP (eds), Biological Control of Invasive Alien Plants in South Africa (1999–2010). Afr. Entomol. (Special Issue) 19(2): 258-268Google Scholar
  18. McFadyen RE, Weggler-Beaton K (2000) The biology and host specificity of Liothrips sp. (Thysanoptera: Phlaeothripidae), an agent rejected for biocontrol of annual ragweed. Biol Control 19:105–111CrossRefGoogle Scholar
  19. Moulton D (1933) The Thysanoptera of South America (III). Rev Entomol 3:227–385Google Scholar
  20. Mound LA (2005) Thysanoptera (Thrips) of the world a checklist. http://www.ento.csiro.au/thysanoptera/worldthrips.html. Accessed 9 Nov 2014
  21. Mound LA, Pereyra V (2008) Liothrips tractabilis sp.n. (Thysanoptera: Phlaeothripinae) from Argentina. Neotropical Entomol 37:63–67CrossRefGoogle Scholar
  22. Rafter MA, Gillions RM, Walter GH (2008) Generalist herbivores in weed biological control—a natural experiment with reportedly polyphagous thrips. Biol Control 44:188–195CrossRefGoogle Scholar
  23. Reimer NJ (1985) An evaluation of the status and effectiveness of Liothrips urichi Karny (Thysanoptera: Phlaeothripidae) and Blepharomastix ebulealis (Guenee) (Lepidoptera: Pyralidae) on Clidemia hirta (L.) D. Don in O’ahu forests. Ph.D. diss., Univ. Hawaii, HonoluluGoogle Scholar
  24. Schaffner U (2001) Host range testing of insects for biological weed control: how can it be better interpreted? Bioscience 51(11):951–959CrossRefGoogle Scholar
  25. SIIA (2012) Sistema Integrado de Información Agropecuaria, Ministerio de Agricultura Ganadería y Pesca, Buenos Aires, Argentina. http://www.siia.gov.ar/_apps/siia/estimaciones/estima2.php
  26. Trethowan PD, Roberston MP, McConnachie AJ (2011) Ecological niche modelling of an invasive alien plant and its potential biological control agents. S Afr J Bot 77:137–146CrossRefGoogle Scholar
  27. Vitti D, Salto C, Sosa MA, Luiselli S (2008) Insectos en Girasol:to Polinizadores, fitófagos y entomófagos. Ediciones INTA, p 56Google Scholar
  28. Wapshpere AJ (1974) A strategy for evaluating the safety of organisms for biological weed control. Ann Appl Biol 77:201–211CrossRefGoogle Scholar
  29. Zamar MI, Hernandez MC, Soto-Rodriguez GA, Retana-Salazar AP (2013) A new tropical species of Liothrips (Thysanoptera: Phlaeothripidae) associated with Ludwigia (Myrtales: Onagraceae). Rev Soc Entomol Argent 72(1–2):83–89Google Scholar

Copyright information

© International Organization for Biological Control (IOBC) 2015

Authors and Affiliations

  1. 1.Agricultural Research Council – Plant Protection Research Institute, Weed ResearchHiltonSouth Africa
  2. 2.Weed Research Unit, Biosecurity NSW, Department of Primary IndustriesOrangeAustralia
  3. 3.Fundación para el Estudio de Especies InvasivasHurlinghamArgentina

Personalised recommendations