Abstract
Fusarium oxysporum f. sp. pisi (van Hall) Snyder & Hansen is an important pathogen of pea that causes wilt. The present study was carried out to evaluate the efficacy of rhamnolipid biosurfactant produced by newly isolated Pseudomonas aeruginosa strain SS14 as an antifungal agent against F. oxysporum f. sp. pisi in Pisum sativum L. The bacterial strain P. aeruginosa SS14 was isolated from crude oil contaminated soil and identified by 16S rDNA sequencing. The biosurfactant was characterized as rhamnolipid by FTIR and LC–MS analyses. Treatment of pea seeds and seedlings under natural conditions of light, temperature and humidity with the rhamnolipid at a concentration of 25 µg ml−1 prior to sowing or planting in pathogen laden soil resulted in complete suppression of characteristic wilt symptoms. The results demonstrate the possibility to develop a sustainable and eco-friendly control measure against F. oxysporum f. sp. pisi which is currently not available.



References
Abalos A, Pinazo A, Infante MR, Casals M, Garcia F, Manresa A (2001) Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir 17:1367–1371
Abdel-Mawgoud AM, Lepine F, Deziel E (2010) Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol 86:1323–1336
Alabouvette C, Olivain C, Migheli Q, Steinberg C (2009) Microbiological control of soil-borne phytopathogenic fungi with special emphasis on wilt inducing Fusarium oxysporum. New Phytol 184:529–544
Banat IM (1995) Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: a review. Bioresour Technol 51:1–12
Bani M, Rubiales D, Rispail N (2012) A detailed evaluation method to identify sources of quantitative resistance to Fusarium oxysporum f. sp. pisi race 2 within a Pisum spp. germplasm collection. Plant Pathol 61:532–542
Benincasa M, Accorsini FR (2008) Pseudomonas aeruginosa LBI production as an integrated process using the wastes from sunflower-oil refining as a substrate. Bioresour Technol 99:3843–3849
Bradley GG, Punja ZK (2010) Composts containing fluorescent pseudomonads suppress fusarium root and stem rot development on greenhouse cucumber. Can J Microbiol 56:896–905
Cameotra SS, Makkar RS, Kaur J, Mehta SK (2010) Synthesis of biosurfactants and their advantages to microorganisms and mankind. Adv Exp Med Biol 672:261–280
De Jonghe K, De Dobbelaere I, Sarrazyn R, Hofte M (2005) Control of Phytophthora cryptogea in the hydroponic forcing of witloof chicory with the rhamnolipid-based biosurfactant formulation PRO1. Plant Pathol 54:219–226
Deziel E, Lepine F, Dennie D, Boismenu D, Mamer OA, Villemur R (1999) Liquid chromatography/mass spectrometry analysis of mixtures of rhamnolipids produced by Pseudomonas aeruginosa strain 57RP grown on mannitol or naphthalene. Biochim Biophys Acta 1440:244–252
George S, Jayachandran K (2008) Analysis of rhamnolipid biosurfactants produced through submerged fermentation using orange fruit peelings as sole carbon source. Appl Biochem Biotechnol 158:694–705
Goswami D, Handique PJ, Deka S (2014) Rhamnolipid biosurfactant against Fusarium sacchari—the causal organism of pokkah boeng disease of sugarcane. J Basic Microbiol 54:548–557
Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319
Haba E, Abalos A, Jauregui O, Espuny MJ, Manresa A (2003) Use of liquid chromatography-mass spectroscopy for studying the composition and properties of rhamnolipids produced by different strains of Pseudomonas aeruginosa. J Surfactants Deterg 6:155–161
Kim BS, Lee JY, Hwang BK (2000) In vivo control and in vitro antifungal activity of rhamnolipid B, a glycolipid antibiotic, against Phytophthora capsici and Colletotrichum orbiculare. Pest Manag Sci 56:1029–1035
Kraft JM (1994) Fusarium wilt of peas (A review). Agronomie 14:561–567
MacHardy WE, Beckman CH (1983) Vascular wilt fusaria: infection and pathogenesis. In: Nelson PE, Tousson TA, Cook RJ (eds) Fusarium: diseases, biology and taxonomy. The Pennsylvania State University Press, University Park, USA, pp 365–390
Nitschke M, Costa SGVAO (2007) Biosurfactants in food industry. Trends Food Sci Tech 18:252–259
Pantazaki AA, Papaneophytou CP, Lambropoulou DA (2011) Simultaneous polyhydroxyalkanoates and rhamnolipids production by Thermus thermophilus HB8. AMB Express 1(17):1–13
Pereira JFB, Gudina EJ, Doria ML, Domingues MR, Rodrigues LR, Teixeira JA, Coutinho JAP (2012) Characterization by electrospray ionization and tandem mass spectrometry of rhamnolipids produced by two Pseudomonas aeruginosa strains isolated from Brazilian crude oil. Eur J Mas Spectrom 18:399–406
Perneel M, D’hondt L, De Maeyer K, Adiobo A, Rabaey K, Hofte M (2008) Phenazines and biosurfactants interact in the biological control of soil-borne diseases caused by Pythium spp. Environ Microbiol 10:778–788
Pornsunthorntawee P, Wongpanit P, Chavadej S, Abe M, Rujiravanit R (2008) Structural and physicochemical characterization of crude biosurfactant produced by Pseudomonas aeruginosa SP4 isolated from petroleum-contaminated soil. Bioresour Technol 99:1589–1595
Rahman KSM, Rahman TJ, McClean S, Marchant R, Banat IM (2002) Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa using low-cost raw materials. Biotechnol Progr 18:1277–1281
Sandoval JCM, Karns J, Torrents A (2001) Effect of nutritional and environmental conditions on the production and composition of rhamnolipids by P. aeruginosa UG2. Microbiol Res 155:249–256
Sharma P (2011) Alarming occurrence of Fusarium wilt disease in pea (Pisum sativum L.) cultivations of Jabalpur district in Central India revealed by an array of pathogenicity tests. Agric Biol J N Am 2(6):981–994
Sharma A, Rathour R, Plaha P, Katoch V, Khalsa GS, Patial V, Singh Y, Pathania NK (2010) Induction of Fusarium wilt (Fusarium oxysporum f. sp. pisi) resistance in garden pea using induced mutagenesis and in vitro selection techniques. Euphytica 173:345–356
Smith SN (2007) An overview of ecological and habitat aspects in the genus Fusarium with special emphasis on the soil-borne pathogenic forms. Plant Pathol Bull 16:97–120
Sriram MI, Kalishwaralal K, Deepak V, Gracerosepat R, Srisakthi K, Gurunathan S (2011) Biofilm inhibition and antimicrobial action of lipopeptide biosurfactant produced by heavy metal tolerant strain Bacillus cereus NK1. Colloids Surf B Biointerfaces 85:174–181
Stanghellini ME, Miller RM (1997) Biosurfactants: their identity and potential efficacy in the biological control of zoosporic plant pathogens. Plant Dis 81:4–12
Varnier AL, Sanchez L, Vatsa P, Boudesocque L, Garcia-Brugger A, Rabenoelina F, Sorokin A, Renault JH, Kauffmann S, Pugin A, Clement C, Baillieul F, Dorey S (2009) Bacterial rhamnolipids are novel MAMPs conferring resistance to Botrytis cinerea in grapevine. Plant Cell Environ 32:178–193
Acknowledgments
Siddhartha N. Borah is thankful to the Department of Biotechnology, Govt. of India for providing assistance as a Junior Research Fellow (JRF) to carry out the research work under a project sanction to the corresponding author vide letter no. BT/186/NE/TBP/2011. Authors would like to thank Biotech Park, Govt. of Assam, India for analyzing the samples in LC–MS.
Author information
Authors and Affiliations
Corresponding author
Additional information
Handling Editor: Jesus Mercado Blanco
Rights and permissions
About this article
Cite this article
Borah, S.N., Goswami, D., Lahkar, J. et al. Rhamnolipid produced by Pseudomonas aeruginosa SS14 causes complete suppression of wilt by Fusarium oxysporum f. sp. pisi in Pisum sativum . BioControl 60, 375–385 (2015). https://doi.org/10.1007/s10526-014-9645-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10526-014-9645-0