Advertisement

BioControl

, Volume 60, Issue 3, pp 375–385 | Cite as

Rhamnolipid produced by Pseudomonas aeruginosa SS14 causes complete suppression of wilt by Fusarium oxysporum f. sp. pisi in Pisum sativum

  • Siddhartha Narayan Borah
  • Debahuti Goswami
  • Jiumoni Lahkar
  • Hridip Kumar Sarma
  • Mojibur Rahman Khan
  • Suresh DekaEmail author
Article

Abstract

Fusarium oxysporum f. sp. pisi (van Hall) Snyder & Hansen is an important pathogen of pea that causes wilt. The present study was carried out to evaluate the efficacy of rhamnolipid biosurfactant produced by newly isolated Pseudomonas aeruginosa strain SS14 as an antifungal agent against F. oxysporum f. sp. pisi in Pisum sativum L. The bacterial strain P. aeruginosa SS14 was isolated from crude oil contaminated soil and identified by 16S rDNA sequencing. The biosurfactant was characterized as rhamnolipid by FTIR and LC–MS analyses. Treatment of pea seeds and seedlings under natural conditions of light, temperature and humidity with the rhamnolipid at a concentration of 25 µg ml−1 prior to sowing or planting in pathogen laden soil resulted in complete suppression of characteristic wilt symptoms. The results demonstrate the possibility to develop a sustainable and eco-friendly control measure against F. oxysporum f. sp. pisi which is currently not available.

Keywords

Fusarium oxysporum f. sp. pisi Pseudomonas aeruginosa strain SS14 Pisum sativum Rhamnolipid Antifungal agent 

Notes

Acknowledgments

Siddhartha N. Borah is thankful to the Department of Biotechnology, Govt. of India for providing assistance as a Junior Research Fellow (JRF) to carry out the research work under a project sanction to the corresponding author vide letter no. BT/186/NE/TBP/2011. Authors would like to thank Biotech Park, Govt. of Assam, India for analyzing the samples in LC–MS.

References

  1. Abalos A, Pinazo A, Infante MR, Casals M, Garcia F, Manresa A (2001) Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir 17:1367–1371CrossRefGoogle Scholar
  2. Abdel-Mawgoud AM, Lepine F, Deziel E (2010) Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol 86:1323–1336CrossRefPubMedCentralPubMedGoogle Scholar
  3. Alabouvette C, Olivain C, Migheli Q, Steinberg C (2009) Microbiological control of soil-borne phytopathogenic fungi with special emphasis on wilt inducing Fusarium oxysporum. New Phytol 184:529–544CrossRefPubMedGoogle Scholar
  4. Banat IM (1995) Biosurfactants production and possible uses in microbial enhanced oil recovery and oil pollution remediation: a review. Bioresour Technol 51:1–12CrossRefGoogle Scholar
  5. Bani M, Rubiales D, Rispail N (2012) A detailed evaluation method to identify sources of quantitative resistance to Fusarium oxysporum f. sp. pisi race 2 within a Pisum spp. germplasm collection. Plant Pathol 61:532–542CrossRefGoogle Scholar
  6. Benincasa M, Accorsini FR (2008) Pseudomonas aeruginosa LBI production as an integrated process using the wastes from sunflower-oil refining as a substrate. Bioresour Technol 99:3843–3849CrossRefPubMedGoogle Scholar
  7. Bradley GG, Punja ZK (2010) Composts containing fluorescent pseudomonads suppress fusarium root and stem rot development on greenhouse cucumber. Can J Microbiol 56:896–905CrossRefPubMedGoogle Scholar
  8. Cameotra SS, Makkar RS, Kaur J, Mehta SK (2010) Synthesis of biosurfactants and their advantages to microorganisms and mankind. Adv Exp Med Biol 672:261–280CrossRefPubMedGoogle Scholar
  9. De Jonghe K, De Dobbelaere I, Sarrazyn R, Hofte M (2005) Control of Phytophthora cryptogea in the hydroponic forcing of witloof chicory with the rhamnolipid-based biosurfactant formulation PRO1. Plant Pathol 54:219–226CrossRefGoogle Scholar
  10. Deziel E, Lepine F, Dennie D, Boismenu D, Mamer OA, Villemur R (1999) Liquid chromatography/mass spectrometry analysis of mixtures of rhamnolipids produced by Pseudomonas aeruginosa strain 57RP grown on mannitol or naphthalene. Biochim Biophys Acta 1440:244–252CrossRefPubMedGoogle Scholar
  11. George S, Jayachandran K (2008) Analysis of rhamnolipid biosurfactants produced through submerged fermentation using orange fruit peelings as sole carbon source. Appl Biochem Biotechnol 158:694–705CrossRefPubMedGoogle Scholar
  12. Goswami D, Handique PJ, Deka S (2014) Rhamnolipid biosurfactant against Fusarium sacchari—the causal organism of pokkah boeng disease of sugarcane. J Basic Microbiol 54:548–557CrossRefPubMedGoogle Scholar
  13. Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319CrossRefPubMedGoogle Scholar
  14. Haba E, Abalos A, Jauregui O, Espuny MJ, Manresa A (2003) Use of liquid chromatography-mass spectroscopy for studying the composition and properties of rhamnolipids produced by different strains of Pseudomonas aeruginosa. J Surfactants Deterg 6:155–161CrossRefGoogle Scholar
  15. Kim BS, Lee JY, Hwang BK (2000) In vivo control and in vitro antifungal activity of rhamnolipid B, a glycolipid antibiotic, against Phytophthora capsici and Colletotrichum orbiculare. Pest Manag Sci 56:1029–1035CrossRefGoogle Scholar
  16. Kraft JM (1994) Fusarium wilt of peas (A review). Agronomie 14:561–567CrossRefGoogle Scholar
  17. MacHardy WE, Beckman CH (1983) Vascular wilt fusaria: infection and pathogenesis. In: Nelson PE, Tousson TA, Cook RJ (eds) Fusarium: diseases, biology and taxonomy. The Pennsylvania State University Press, University Park, USA, pp 365–390Google Scholar
  18. Nitschke M, Costa SGVAO (2007) Biosurfactants in food industry. Trends Food Sci Tech 18:252–259CrossRefGoogle Scholar
  19. Pantazaki AA, Papaneophytou CP, Lambropoulou DA (2011) Simultaneous polyhydroxyalkanoates and rhamnolipids production by Thermus thermophilus HB8. AMB Express 1(17):1–13Google Scholar
  20. Pereira JFB, Gudina EJ, Doria ML, Domingues MR, Rodrigues LR, Teixeira JA, Coutinho JAP (2012) Characterization by electrospray ionization and tandem mass spectrometry of rhamnolipids produced by two Pseudomonas aeruginosa strains isolated from Brazilian crude oil. Eur J Mas Spectrom 18:399–406CrossRefGoogle Scholar
  21. Perneel M, D’hondt L, De Maeyer K, Adiobo A, Rabaey K, Hofte M (2008) Phenazines and biosurfactants interact in the biological control of soil-borne diseases caused by Pythium spp. Environ Microbiol 10:778–788CrossRefPubMedGoogle Scholar
  22. Pornsunthorntawee P, Wongpanit P, Chavadej S, Abe M, Rujiravanit R (2008) Structural and physicochemical characterization of crude biosurfactant produced by Pseudomonas aeruginosa SP4 isolated from petroleum-contaminated soil. Bioresour Technol 99:1589–1595CrossRefPubMedGoogle Scholar
  23. Rahman KSM, Rahman TJ, McClean S, Marchant R, Banat IM (2002) Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa using low-cost raw materials. Biotechnol Progr 18:1277–1281CrossRefGoogle Scholar
  24. Sandoval JCM, Karns J, Torrents A (2001) Effect of nutritional and environmental conditions on the production and composition of rhamnolipids by P. aeruginosa UG2. Microbiol Res 155:249–256CrossRefGoogle Scholar
  25. Sharma P (2011) Alarming occurrence of Fusarium wilt disease in pea (Pisum sativum L.) cultivations of Jabalpur district in Central India revealed by an array of pathogenicity tests. Agric Biol J N Am 2(6):981–994CrossRefGoogle Scholar
  26. Sharma A, Rathour R, Plaha P, Katoch V, Khalsa GS, Patial V, Singh Y, Pathania NK (2010) Induction of Fusarium wilt (Fusarium oxysporum f. sp. pisi) resistance in garden pea using induced mutagenesis and in vitro selection techniques. Euphytica 173:345–356CrossRefGoogle Scholar
  27. Smith SN (2007) An overview of ecological and habitat aspects in the genus Fusarium with special emphasis on the soil-borne pathogenic forms. Plant Pathol Bull 16:97–120Google Scholar
  28. Sriram MI, Kalishwaralal K, Deepak V, Gracerosepat R, Srisakthi K, Gurunathan S (2011) Biofilm inhibition and antimicrobial action of lipopeptide biosurfactant produced by heavy metal tolerant strain Bacillus cereus NK1. Colloids Surf B Biointerfaces 85:174–181CrossRefPubMedGoogle Scholar
  29. Stanghellini ME, Miller RM (1997) Biosurfactants: their identity and potential efficacy in the biological control of zoosporic plant pathogens. Plant Dis 81:4–12CrossRefGoogle Scholar
  30. Varnier AL, Sanchez L, Vatsa P, Boudesocque L, Garcia-Brugger A, Rabenoelina F, Sorokin A, Renault JH, Kauffmann S, Pugin A, Clement C, Baillieul F, Dorey S (2009) Bacterial rhamnolipids are novel MAMPs conferring resistance to Botrytis cinerea in grapevine. Plant Cell Environ 32:178–193CrossRefPubMedGoogle Scholar

Copyright information

© International Organization for Biological Control (IOBC) 2014

Authors and Affiliations

  • Siddhartha Narayan Borah
    • 1
  • Debahuti Goswami
    • 1
  • Jiumoni Lahkar
    • 1
  • Hridip Kumar Sarma
    • 2
  • Mojibur Rahman Khan
    • 1
  • Suresh Deka
    • 1
    Email author
  1. 1.Environmental Biotechnology Laboratory, Life Sciences DivisionInstitute of Advanced Study in Science and Technology (IASST)GuwahatiIndia
  2. 2.Department of BiotechnologyGauhati UniversityGuwahatiIndia

Personalised recommendations