, Volume 60, Issue 3, pp 425–436 | Cite as

Allelopathic and autotoxicity effects of barley (Hordeum vulgare L. ssp. vulgare) root exudates

  • Imen BouhaouelEmail author
  • Aurélie Gfeller
  • Marie-Laure Fauconnier
  • Salah Rezgui
  • Hajer Slim Amara
  • Patrick du Jardin


The allelopathic activity of barley (Hordeum vulgare L. ssp. vulgare) root exudates was studied by comparing their effects on seedling establishment in barley itself and in two weed species, Bromus diandrus Roth. and Lolium rigidum Gaudin, using an original laboratory protocol, named ‘seed-after-seed’. In this protocol, the donor and the receiver species of water-soluble allelochemicals are grown one after the other in the same dishes, in conditions reducing resource competition between both species. Growth of all receptive species (weeds and barley) was inhibited in a dose-dependent manner, when using increasing barley seed densities (0, 8, 19 and 25 seeds per Petri dish). In our conditions, the barley varieties and landraces exhibited different allelopathic activities against weeds or barley. The allelopathic potential of the barley root exudates was also dependent on the receiver species. Indeed, the released allelochemicals proved to be more toxic against the weed plants than on barley itself. Furthermore, the toxicity of the allelochemicals increased after their release by roots, between day 0 and day 6. These allelochemicals might contribute to the plant community dynamics and their usefulness as bio-herbicides deserves further consideration.


Allelopathy Hordeum vulgare L. ssp. vulgare Root exudates Competition Allelochemical toxicity Weed management 



During this work, the first author was recipient of a PhD fellowship of the Erasmus Mundus Averroès Partnerships Action of the European Commission. We would like to thank François Rochet for her valuable help in statistical analysis. This work was funded by internal grants of Gembloux-Agro Bio Tech, University of Liège, Belgium.


  1. Baghestani A, Lemieux C, Leroux GD, Baziramakenga R (1999) Determination of allelochemicals in spring cereal cultivars of different competitiveness. Weed Sci 47:498–504Google Scholar
  2. Barria BN, Copaja SV, Niemeyer HM (1992) Occurrence of DIBOA in wild Hordeum species and its relation to aphid resistance. Phytochemistry 31:89–91CrossRefGoogle Scholar
  3. Ben Haj Salah H, Kilani H, Souissi T, Latiri K, Dahmane ABK (2005) Etude de la biologie du grand brome (Bromus diandrus Roth.) : Cycle de développement du brome seul et en association avec le blé. Revue de L’INAT 20(2):35–49Google Scholar
  4. Ben-Hammouda M, Kremer RJ, Minor HC, Sarwar M (1995) A chemical basis for differential allelopathic potential of sorghum hybrids on wheat. J Chem Ecol 21:775–786CrossRefPubMedGoogle Scholar
  5. Ben-Hammouda M, Ghorbal H, Kremer RJ, Oueslati O (2002) Autotoxicity of barley. J Plant Nutr 25:1155–1161CrossRefGoogle Scholar
  6. Bertholdsson NO (2004) Variation in allelopathic activity over 100 years of barley selection and breeding. Weed Res 44:78–86CrossRefGoogle Scholar
  7. Chon SU, Kim YM (2004) Herbicidal potential and quantification of suspected allelochemicals from four grass crop extracts. J Agron Crop Sci 190:145–150CrossRefGoogle Scholar
  8. Deghaïs M, El Felah M, Gharbi MS, Zarkouna T, Chakroun M (1999) Les acquis de l’amélioration génétique des céréales en Tunisie. Annales de l’INRAT 72:21–27Google Scholar
  9. Fiers M, Lognay G, Fauconnier ML, Jijakli MM (2013) Volatile compound-mediated interactions between barley and pathogenic fungi in the soil. PLoS ONE 8(6):1–18CrossRefGoogle Scholar
  10. Fuerst ER, Putnam AR (1983) Separating the competitive and allelopathic components of interference: theoretical principles. J Chem Ecol 9:937–944CrossRefPubMedGoogle Scholar
  11. Fujii Y (2001) Screening and future exploitation of allelopathic plant as alternative herbicides with special reference to hairy vetch. J Crop Prot 4:257–275CrossRefGoogle Scholar
  12. Gagliardo RW, Chilton WS (1992) Soil transformation of 2(3H)-benzoxazolone of rye into phytotoxic 2-amino-3H-phenoxazin-3-one. J Chem Ecol 18:1683–1691CrossRefPubMedGoogle Scholar
  13. Gasquez J (2000) Extension des graminées adventices résistantes aux antigraminées foliaires en France. In: Proceedings of the XI international conference on weed biology. Association Française de Protection des Plantes, Dijon, France, pp 485–492Google Scholar
  14. Gfeller A, Laloux M, Barsics F, Kati DE, Haubruge E, du Jardin P, Verheggen FJ, Lognay G, Wathelet JP, Fauconnier ML (2013) Characterization of volatile organic compounds emitted by barley (Hordeum vulgare L.) roots and their attractiveness to wireworms. J Chem Ecol 39:1129–1139CrossRefPubMedGoogle Scholar
  15. Gianoli E, Niemeyer HM (1998) DIBOA in wild Poaceae: sources of resistance to the Russian wheat aphid (Diuraphis noxia) and the greenbug (Schizaphis graminum). Euphytica 102:317–321CrossRefGoogle Scholar
  16. Grün S, Frey M, Gierl A (2005) Evolution of the indole alkaloid biosynthesis in the genus Hordeum: distribution of gramine and DIBOA and isolation of the benzoxazinoid biosynthesis genes from Hordeum lechleri. Phytochemistry 66:1264–1272CrossRefPubMedGoogle Scholar
  17. Gubbels GH, Kenaschuk EO (1989) Agronomic performance of flax grown on canola, barley and flax stubble with and without tillage prior to seeding. Can J Plant Sci 69:31–38CrossRefGoogle Scholar
  18. Hoult AHC, Lovett JV (1993) Biologically active secondary metabolites of barley. III. A method for identification and quantification of hordenine and gramine in barley by high-performance liquid chromatography. J Chem Ecol 19:2245–2254CrossRefPubMedGoogle Scholar
  19. Inderjit S (2001) Soil: environmental effects on allelochemical activity. Agron J 93:79–84Google Scholar
  20. Inderjit S (2005) Soil microorganisms: an important determinant of allelopathic activity. Plant Soil 274:227–236CrossRefGoogle Scholar
  21. Kellner M, Kolodinska Brantestam A, Ahman I, Ninkovic V (2010) Plant volatile-induced aphid resistance in barley cultivars is related to cultivar age. Theor Appl Genet 121:1133–1139CrossRefPubMedGoogle Scholar
  22. Kremer R, Ben-Hammouda M (2009) Allelopathic plants. 19. Barley (Hordeum vulgare L.). Allelopath J 24(2):225–242Google Scholar
  23. Kushima M, Kakuta H, Kosemura S, Yamamura S, Yamada K, Yokotani-Tomita K, Hasegawa K (1998) An allelopathic substance exuded from germinating watermelon seeds. Plant Growth Regul 25:1–4CrossRefGoogle Scholar
  24. Lanoue A, Burlat V, Henkes GJ, Koch I, Schurr U, Röse USR (2010) De novo biosynthesis of defense root exudates in response to Fusarium attack in barley. New Phytol 185:577–588CrossRefPubMedGoogle Scholar
  25. Laterra P, Bazzalo ME (1999) Seed-to-seed allelopathic effects between two invaders of burned Pampa grasslands. Weed Res 39:297–308CrossRefGoogle Scholar
  26. Liu DL, Lovett JV (1993a) Biologically active secondary metabolites of barley. I. Developing techniques and assessing allelopathy in barley. J Chem Ecol 19:2217–2230CrossRefPubMedGoogle Scholar
  27. Liu DL, Lovett JV (1993b) Biologically active secondary metabolites of barley. II. Phytotoxicity of barley allelochemicals. J Chem Ecol 19:2231–2244CrossRefPubMedGoogle Scholar
  28. Lodhi MAK, Bilal R, Malik KA (1987) Allelopathy in agroecosystems: wheat phytotoxicity and its possible role in crop rotation. J Chem Ecol 13:1881–1891CrossRefPubMedGoogle Scholar
  29. Ma SY, Kim JS, Ryang HS (1999) Allelopathic effect of barley to red rice and barnyardgrass. Korean J Weed Sci 19:228–235Google Scholar
  30. Macías FA, Marín D, Oliveros-Bastidas A, Varela RM, Simonet AM, Carrera C, Molinillo JM (2003) Allelopathy as a new strategy for sustainable ecosystems development. Biol Sci Space 17(1):18–23CrossRefPubMedGoogle Scholar
  31. Mason HE, Spaner D (2006) Competitive ability of wheat in conventional and organic management systems: a review of the literature. Can J Plant Sci 86:333–343CrossRefGoogle Scholar
  32. Miller DA (1983) Allelopathic effects of alfalfa. J Chem Ecol 9:1059–1072CrossRefPubMedGoogle Scholar
  33. Nilsson MC (1994) Separation of allelopathy and resource competition by the boreal dwarf shrub Empetrum hermaphroditum Hagerup. Oecologia 98:1–7CrossRefGoogle Scholar
  34. Ninkovic V (2003) Volatile communication between barley plants affects biomass allocation. J Exp Bot 54(389):1931–1939CrossRefPubMedGoogle Scholar
  35. Olofsdotter M, Navarez M, Rebulanan M, Streibig JC (1999) Weed-suppressing rice cultivars-does allelopathy play a role? Weed Res 39:441–454CrossRefGoogle Scholar
  36. Oueslati O, Ben-Hammouda M, Ghorbal MH, El Gazzeh M, Kremer RJ (2005) Barley autotoxicity as influenced by varietal and seasonal variation. J Agron Crop Sci 191:249–254CrossRefGoogle Scholar
  37. Oveisi M, Mashhadi HR, Baghestani MA, Alizadeh HM, Badri S (2008) Assessment of the allelopathic potential of 17 Iranian barley cultivars in different development stages and their variations over 60 years of selection. Weed Biol Manag 8:225–232CrossRefGoogle Scholar
  38. Overland L (1966) The role of allelopathic substances in the ‘smother crop’ barley. Am J Bot 53:423–432CrossRefGoogle Scholar
  39. Petersen J, Belz R, Walker F, Hurle K (2001) Weed suppression by release of isothiocyanates from turnip-rape mulch. Agron J 93:37–43CrossRefGoogle Scholar
  40. Putnam AR (1985) Allelopathic research in agriculture: past highlights and potential. In: Thompson AC (ed) The chemistry of allelopathy: biochemical interactions among plants. American Chemical Society, Washington, USA, pp 1–8Google Scholar
  41. Qasem JR, Hill TA (1989) On difficulties with allelopathy methodology. Weed Res 29:345–347CrossRefGoogle Scholar
  42. Rice EL (1984) Allelopathy, 2nd edn. Academic Press, Orlando, USAGoogle Scholar
  43. Ridenour WM, Callaway RM (2001) The relative importance of allelopathy in interference: the effects of an invasive weed on a native bunchgrass. Oecologia 126:444–450CrossRefGoogle Scholar
  44. Souissi T, Belhadjsalah H, Mhafdhi M, Latiri K (2000) Non chemical control of Bromus diandrus Roth. in wheat in Tunisia. In: Proceedings of the XI International Conference on Weed Biology. Association Française de Protection des Plantes, Dijon, France, pp 417–424Google Scholar
  45. Souissi T, BelhadjSalah H, Latiri K (2001) Brome in cereal crops: infestations and management. L’Investisseur Agricole 42:29–32Google Scholar
  46. Souissi T, Labidi S, Ben Hadj Salah H (2004) Mise en évidence et origine de la résistance herbicide aux raygrass (Lolium rigidum Gaud.) dans les cultures de blé. Revue de L’INAT 19(1):149–161Google Scholar
  47. Vasilakoglou I, Dhima K, Lithourgidis A, Eleftherohorinos I (2009) Allelopathic potential of 50 barley cultivars and the herbicidal effects of barley extract. Allelopath J 24(2):309–320Google Scholar
  48. Viard-Crétat F, Gallet C, Lefebvre M, Lavorel S (2009) A leachate a day keeps the seedlings away: mowing and the inhibitory effects of Festuca paniculata in subalpine grasslands. Ann Bot 103:1271–1278CrossRefPubMedCentralPubMedGoogle Scholar
  49. Weidenhamer JD (1996) Distinguishing resource competition and chemical interference: overcoming the methodological impasse. Agron J 88:866–875CrossRefGoogle Scholar
  50. Wu H, Haig T, Prately J, Lemerle D, Lemerle D, An M (2000a) Distribution and exudation of allelochemicals in wheat Triticum aestivum. J Chem Ecol 26:2141–2154CrossRefGoogle Scholar
  51. Wu H, Prately J, Lemerle D, Haig T (2000b) Evaluation of seedling allelopathy in 453 wheat (Triticum aestivum) accessions against annual ryegrass (Lolium rigidum) by the equal-compartment-agar method. Aust J Agric Res 51:937–944CrossRefGoogle Scholar
  52. Zhang S, Liu J, Bao X, Niu K (2011) Seed-to-seed potential allelopathic effects between Ligularia virgaurea and native grass species of Tibetan alpine grasslands. Ecol Res 26:47–52CrossRefGoogle Scholar

Copyright information

© International Organization for Biological Control (IOBC) 2014

Authors and Affiliations

  • Imen Bouhaouel
    • 1
    • 3
    Email author
  • Aurélie Gfeller
    • 1
    • 4
  • Marie-Laure Fauconnier
    • 2
  • Salah Rezgui
    • 3
  • Hajer Slim Amara
    • 3
  • Patrick du Jardin
    • 1
  1. 1.Plant Biology Laboratory, Gembloux Agro-Bio TechUniversity of LiègeGemblouxBelgium
  2. 2.General and Organic Chemistry Laboratory, Gembloux Agro-Bio TechUniversity of LiègeGemblouxBelgium
  3. 3.Genetics and Plant Breeding Laboratory, Department of Agronomy and Plant BiotechnologyNational Agronomic Institute of TunisiaTunis MahrageneTunisia
  4. 4.Swiss Federal Research Station Agroscope Changins Wädenswil ACNyonSwitzerland

Personalised recommendations