Skip to main content

Host range tests reveal Paectes longiformis is not a suitable biological control agent for the invasive plant Schinus terebinthifolia

Abstract

The most critical step during a weed biological control program is determination of a candidate agent’s host range. Despite rigorous protocols and extensive testing, there are still concerns over potential non-target effects following field releases. With the objective to improve risk assessment in biological control, no-choice and choice testing followed by a multiple generation study were conducted on the leaf-defoliator, Paectes longiformis Pogue (Lepidoptera: Euteliidae). This moth is being investigated as a biological control agent of Schinus terebinthifolia Raddi (Sapindales: Anacardiaceae), which is one of the worst invasive plant species in Florida, USA. Results from no-choice testing showed higher larval survival on S. terebinthifolia (48 %) and its close relative Schinus molle L. (47 %), whereas lower survival was obtained on six non-target species (<25 %). When given a choice, P. longiformis females preferred to lay eggs on the target weed, but oviposition also occurred on four non-target species. An improved performance on the native Rhus aromatica Aiton was found when insects were reared exclusively on this non-target species for one or two generations. Results from host range testing suggest that this moth is oligophagous, but has a preference for the target weed. Non-target effects found during multiple generation studies indicate that P. longiformis should not be considered as a biological control agent of S. terebinthifolia.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Balciunas JK, Burrows DW, Purcell MF (1996) Comparison of the physiological and realized host—ranges of a biological control agent from Australia for the control of the aquatic weed, Hydrilla verticillata. Biol Control 7:148–158

    Article  Google Scholar 

  • Barkley FA (1944) Schinus L. Brittonia 5:160–198

    Article  Google Scholar 

  • Barkley FA (1957) A study of Schinus L., tomo 8. Lilloa Revista de Botanica. Universidad Nacional del Tucuman, Argentina

    Google Scholar 

  • Barratt BIP, Howarth FG, Withers TM, Kean JM, Ridley GS (2010) Progress in risk assessment for classical biological control. Biol Control 52:245–254

    Article  Google Scholar 

  • Bennett FD, Habeck DH (1991) Brazilian peppertree—prospects for biological control in Florida. In: Center T (ed) Proceedings of the symposium of exotic pest plants. Florida, Miami, USA, pp 23–33

    Google Scholar 

  • Briese DT (2003) The centrifugal phylogenetic method used to select plants for host-specificity testing of weed biological control agents: Can and should it be modernised? In: Spafford-Jacob H., Briese DT (eds) Proceedings of the CRC for Australian weed management biological control of weeds symposium and workshop. Improving the selection, testing and evaluation of weed biological control agents. CRC Weed Management Technical Series #7. Adelaide, Australia, pp 23–33

  • Buckingham GR, Okrah EA, Thomas MC (1989) Laboratory host range tests with Hydrellia pakistanae (Diptera: Ephydridae), an agent for biological control of Hydrilla verticillata (Hydrocharitaceae). Environ Entomol 18:164–171

    Google Scholar 

  • [Cal-IPC] California Invasive Plant Council (2006) California invasive plant inventory. http://www.cal-ipc.org/ip/inventory/pdf/Inventory2006.pdf. Accessed 12 Mar 2014

  • Carey RC (1993) Applied demography for biologists. Oxford University Press, New York, USA

    Google Scholar 

  • Coombs EM, Clark JK, Piper GL, Cofrancesco AF Jr (2004) biological control of invasive plants in the United States. Oregon State University Press, Corvallis, Oregon, USA

    Google Scholar 

  • Cuda JP, Ferriter AP, Manrique V, Medal JC (2006) Florida’s Brazilian peppertree management plan. Recommendations from the Brazilian Peppertree task force Florida Exotic Pest Plant Council, 2nd edn

  • Day MD (1999) Continuation trials: their use in assessing the host range of a potential biological control agent. In: Withers TM, Browne LB, Stanley J (eds) Host specificity testing in Australasia: towards improved assays for biological control. Queensland Department of Natural Resources, Coorparoo, DC, USA, pp 11–19

    Google Scholar 

  • Delfosse ES (2005) Risk and ethics in biological control. Biol Control 35:319–329

    Article  Google Scholar 

  • Dittrich RL, Macedo JHP, Cuda JP, Biondo AW (2004) Brazilian peppertree sawfly larvae toxicity in bovines. Vet Clin Path 33:191–553

    Google Scholar 

  • Dunevitz V, Ewel J (1981) Allelopathy of wax myrtle (Myrica cerifera) on Schinus terebinthifolius. Fla Sci 44:13–20

    Google Scholar 

  • Fowler SV, Syrett P, Hill RL (2000) Success and safety in the biological control of environmental weeds in New Zealand. Austral Ecol 25:553–562

    Article  Google Scholar 

  • Fowler SV, Paynter Q, Dodd S, Groenteman R (2012) How can ecologists help practitioners minimize non-target effects in weed biocontrol? J Appl Ecol 49:307–310

    Article  Google Scholar 

  • Fry JD (2003) Detecting ecological trade-offs using selection experiments. Ecology 84:1672–1678

    Article  Google Scholar 

  • Frye MJ, Lake EC, Hough-Goldstein J (2010) Field host-specificity of the mile-a-minute weevil, Rhinoncomimus latipes Korotyaev (Coleoptera: Curculionidae). Biol Control 55:234–240

    Article  Google Scholar 

  • Grevstad FS (2006) Ten-year impact of the biological control agents Galerucella pusilla and G. calmariensis (Coleoptera: Chrysomelidae) on purple loosestrife (Lythrum salicaria) in Central New York State. Biol Control 39:1–8

    Article  Google Scholar 

  • Habeck DH, Bennett FD, Balciunas JK (1994) Biological control of terrestrial and wetland weeds. In: Rosen D, Bennett FD, Capinera JL (eds) Pest management in the subtropics: biological control—a Florida perspective. Intercept, Andover, UK, pp 523–547

    Google Scholar 

  • Hartley KLS (1990) The role of biological control in the management of water hyacinth, Eichhornia crassipes. J Biocontrol News Inf 11:11–22

    Google Scholar 

  • Hartley KLS, Forno IW (1992) Biological control of weeds: a handbook for practitioners and students. Inkata Press, Melbourne, Australia

    Google Scholar 

  • Hill WG, Caballero A (1992) Artificial selection experiments. Annu Rev Ecol Syst 23:287–310

    Article  Google Scholar 

  • Julien MH, Griffiths MW (1998) Biological control of weeds a world catalogue of agents and their target weeds, 4th edn. CABI Publishing, Wallingford, UK

    Google Scholar 

  • Karowe DN (1990) Predicting host range evolution: colonization of Coronilla varia by Colias philodice (Lepidoptera: Pieridae). Evolution 44:1637–1647

    Article  Google Scholar 

  • Louda SM, Pemberton RW, Johnson MT, Follett PA (2003) Nontarget effects—the Achilles’ Heel of biological control? Retrospective analyses to reduce risk associated with biocontrol introductions. Annu Rev Entomol 48:365–396

    Article  CAS  PubMed  Google Scholar 

  • Manrique V, Cuda JP, Overholt WA, Williams DA, Wheeler GS (2008) Effect of host-plant genotypes on the performance of two candidate biological control agents of Brazilian peppertree in Florida. Biol Control 47:167–171

    Article  Google Scholar 

  • Manrique V, Diaz R, Pogue MG, Vitorino MD, Overholt WA (2012) Description and biology of Paectes longiformis (Lepidoptera: Euteliidae), a new species from Brazil and potential biological control agent of Brazilian peppertree in Florida. Biocontrol Sci Technol 22:163–185

    Article  Google Scholar 

  • Marohasy J (1996) Host shifts in biological weed control: real problems, semantic difficulties or poor science? Int J Pest Manag 42:71–75

    Article  Google Scholar 

  • McFayden RE (1998) Biological control of weeds. Annu Rev Entomol 43:369–393

    Article  Google Scholar 

  • McKay F, Oleiro M, Vitorino MD, Wheeler GS (2012) The leafmining Leurocephala schinusae (Lepidoptera: Gracillariidae): not suitable for the biological control of Schinus terebinthifolius (Sapindales: Anacardiaceae) in continental USA. Biocontrol Sci Technol 22:477–489

    Article  Google Scholar 

  • Messina FJ, Mendenhall M, Jones JC (2009) An experimentally induced host shift in a seed beetle. Entomol Exp Appl 132:39–49

    Article  Google Scholar 

  • Morton JF (1978) Brazilian pepper—its impact on people, animals and the environment. Econ Bot 32:353–359

    Article  CAS  Google Scholar 

  • Pemberton RW (2000) Predictable risk to native plants in weed biological control. Oecologia 125:489–494

    Article  Google Scholar 

  • Pogue MG (2013) Review of the Paectes arcigera species complex (Guenée) (Lepidoptera, Euteliidae). ZooKeys 264:125–163

    Article  PubMed  Google Scholar 

  • Rodgers L, Bodle M, Black D, Laroche F (2012) Status of nonindigenous species. In: South florida environmental report, vol. I—the South Florida environment. South Florida Water Management District, West Palm Beach, Florida, USA, pp 7–35

  • SAS Institute (2010) SAS/STAT 9.3 user’s guide. SAS Institute, Cary, North Carolina, USA

    Google Scholar 

  • Schmitz DC, Simberloff D, Hofstetter RH, Haller W, Sutton D (1997) The ecological impact of nonindigenous plants. Island Press, Washington, DC, USA

    Google Scholar 

  • Sheck AL, Gould F (1996) The genetic basis of differences in growth and behavior of specialist and generalist herbivore species: selection on hybrids of Heliothis virescens and Heliothis subflexa (Lepidoptera). Evolution 50:831–841

    Article  Google Scholar 

  • Sheppard AW, Hill R, DeClerck-Floate RA, McClay A, Olckers T, Quimby PC Jr, Zimmermann JG (2003) A global review of risk-benefit-cost analysis for the introduction of classical biological control agents against weeds: a crisis in the making? Biocontrol News Info 24:91N–108N

    Google Scholar 

  • Tipping PW, Martin MR, Nimmoa KR, Pierce RM, Smart MD, White E, Madeira PT, Center TD (2009) Invasion of a West Everglades wetland by Melaleuca quinquenervia countered by classical biological control. Biol Control 48:73–78

    Article  Google Scholar 

  • Tipping PW, Center TD, Sosa AJ, Dray FA (2011) Host specificity assessment and potential impact of Megamelus scutellaris (Hemiptera: Delphacidae) on waterhyacinth Eichhornia crassipes (Pontederiales: Pontederiaceae). Biocontrol Sci Technol 21:75–87

    Article  Google Scholar 

  • USDA Plant Database (2014). http://plants.usda.gov. Accessed 12 Mar 2014

  • van Klinken RD, Edwards OR (2002) Is host specificity of weed biological control agents likely to evolve rapidly following establishment? Ecol Lett 5:590–596

    Article  Google Scholar 

  • Wapshere AJ (1974) A strategy for evaluating the safety of organisms for biological weed control. Ann Appl Biol 77:201–211

    Article  Google Scholar 

  • Wheeler GS, Geigera J, Mc Kayb F, Rendonc J, Chawnerc M, Pratt PD (2011) Defoliating broad-nosed weevil, Plectrophoroides lutra; not suitable for biological control of Brazilian pepper (Schinus terebinthifolius). Biocontrol Sci Technol 21:89–91

    Article  Google Scholar 

  • Williams DA, Overholt WA, Cuda JP, Hughes CR (2005) Chloroplast and microsatellite DNA diversities reveal the introduction history of Brazilian peppertree (Schinus terebinthifolius) in Florida. Mol Ecol 14:3643–3656

    Article  CAS  PubMed  Google Scholar 

  • Williams DA, Muchugu E, Overholt WA, Cuda JP (2007) Colonization patterns of the invasive Brazilian peppertree, Schinus terebinthifolius, in Florida. Heredity 98:284–293

    Article  CAS  PubMed  Google Scholar 

  • Wunderlin RP, Hansen BF (2014) Atlas of Florida vascular plants. Institute for Systematic Botany, University of South Florida, Tampa. http://www.plantatlas.usf.edu. Accessed 12 Mar 2014

  • Zar JH (1999) Biostatistical analysis, 4th edn. Prentice Hall, Upper Saddle River, New Jersey, USA

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to Amy Dubois, Emily Westermeier, and Elizabeth Calise (University of Florida, Florida, USA) for their help rearing the insects and plant maintenance. We also thank our collaborator in Brazil, Marcelo Vitorino (Universidade Regional de Blumenau, Brazil) for help during foreign explorations. In addition, we thank the Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA) for providing the export permits. Finally, we thank the Florida Fish and Wildlife Conservation Commission and the Florida Department of Agriculture and Consumer Services for providing financial support for these studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veronica Manrique.

Additional information

Handling Editor: John Scott.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manrique, V., Diaz, R., Condon, T. et al. Host range tests reveal Paectes longiformis is not a suitable biological control agent for the invasive plant Schinus terebinthifolia . BioControl 59, 761–770 (2014). https://doi.org/10.1007/s10526-014-9591-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-014-9591-x

Keywords

  • biological control
  • Risk assessment
  • Non-target effects
  • Anacardiaceae
  • Euteliidae