Skip to main content
Log in

Biocontrol activity and root colonization by Pseudomonas corrugata strains CCR04 and CCR80 against Phytophthora blight of pepper

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

Previously, we selected Pseudomonas corrugata strains CCR04 and CCR80 as rhizobacteria suppressive to Phytophthora blight of pepper caused by Phytophthora capsici. In this study, we investigated soil microbial activity in pepper plants root-drenched with strains CCR04 and CCR80 in relation to their biocontrol activity, root colonization by using bacterial population counts and scanning electron microscopy, biofilm formation and cell motility as well as cell sensitivity to hydrogen peroxide (H2O2). As a result, strains CCR04 and CCR80 more effectively suppressed disease expression in pepper plants through root colonization than did Paenibacillus polymyxa AC-1 (positive control), Escherichia coli DH5α (negative control) or MgSO4 solution (untreated control). Strains CCR04 and CCR80 had efficient biofilm formation and cell motility (swimming and swarming activities) abilities and responded to certain tested compounds (amino acids, organic acids and sugars), which can be found in root exudates. Strains CCR04 and CCR80 and the positive control strain AC-1 were relatively insensitive to H2O2, a reactive oxidative species at concentration up to 20 mM, unlike the negative control strain DH5α. Taken together, these results suggest that P. corrugata CCR04 and CCR80 can effectively inhibit P. capsici infection of pepper plants through successful colonization of plant roots. This bacterial colonization may be facilitated by the biofilm formation ability and cell motility in addition to reduced sensitivity to H2O2 and probably the production of antimicrobial compounds. These findings highlight the potential of strains CCR04 and CCR80 as biocontrol agents for the management of Phytophthora blight of pepper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albert FG, Bennett LW, Anderson AJ (1986) Peroxidase associated with the root surface of Phaseolus vulgaris. Can J Bot 64:573–578

    Article  CAS  Google Scholar 

  • Barahona E, Navazo A, Martínez-Granero F, Zea-Bonilla T, Pérez-Jiménez RM, Martín M, Rivilla R (2011) Pseudomonas fluorescens F113 mutant with enhanced competitive colonization ability and improved biocontrol activity against fungal root pathogens. Appl Environ Microbiol 77:5412–5419

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bull CT, Weller DM, Thomashow LS (1991) Relationship between root colonization and suppression of Gaeumannomyces graminis var. tritici by Pseudomonas fluorescens strain 2-79. Phytopathology 81:954–959

    Article  Google Scholar 

  • Chen W, Hoitink HAJ, Schmitthenner AF, Tuovinen OH (1988) The role of microbial activity in suppression of damping-off caused by Pythium ultimum. Phytopathology 78:314–322

    Article  Google Scholar 

  • Chin-A-Woeng TFC, de Priester W, van der Bij AJ, Lugtenberg BJJ (1997) Description of the colonization of a gnotobiotic tomato rhizosphere by Pseudomonas fluorescens biocontrol strain WCS365, using scanning electron microscopy. Mol Plant Microbe Interact 10:79–86

    Article  CAS  Google Scholar 

  • Choi DS, Hwang BK (2011) Proteomics and functional analyses of pepper abscisic acid-responsive 1 (ABR1), which is involved in cell death and defense signaling. Plant Cell 23:823–842

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • De Weert S, Vermeiren H, Mulders IHM, Kuiper I, Hendrickx N, Bloemberg GV, Vanderleyden J, De Mot R, Lugtenberg BJJ (2002) Flagella-driven chemotaxis towards exudates components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol Plant Microbe Interact 15:1173–1180

    Article  PubMed  Google Scholar 

  • De Weert S, Kuiper I, Lagendijk EL, Lamers GEM, Lugtenberg BJJ (2004) Role of chemotaxis toward fusaric acid in colonization of hyphae of Fusarium oxysporum f. sp. radicis-lycopersici by Pseudomonas fluorescens WCS365. Mol Plant Microbe Interact 17:1185–1191

    Article  PubMed  Google Scholar 

  • Dekkers LC, van der Bij AJ, Mulders IHM, Phoelich CC, Wentwoord RAR, Glandorf DCM, Wijffelman CA, Lugtenberg BJJ (1998a) Role of the O-antigen of lipopolysaccharide, and possible roles of growth rate and of NADH: ubiquinone oxidoreductase (nuo) in competitive tomato root-tip colonization by Pseudomonas fluorescens WCS365. Mol Plant Microbe Interact 11:763–771

    Article  CAS  PubMed  Google Scholar 

  • Dekkers LC, Phoelich CC, van der Fits L, Lugtenberg BJJ (1998b) A site-specific recombinase is required for competitive root colonization by Pseudomonas fluorescens WCS365. Proc Natl Acd Sci USA 95:7051–7056

    Article  CAS  Google Scholar 

  • Entry JA, Strausbaugh CA, Sojka RE (2000) Wood chip-polyacrylamide medium for biocontrol bacteria decreases Verticillium dahliae infection on potato. Biocontrol Sci Technol 10:677–686

    Article  Google Scholar 

  • Espinosa-Urgel M, Kolter R, Ramos JL (2002) Root colonization by Pseudomonas putida: love at first sight. Microbiology 148:341–343

    CAS  PubMed  Google Scholar 

  • Georgakopoulos DG, Fiddaman P, Leifert C, Malathrakis NE (2002) Biological control of cucumber and sugar beet damping-off caused by Pythium ultimum with bacterial and fungal antagonists. J Appl Microbiol 92:1078–1086

    Article  CAS  PubMed  Google Scholar 

  • Gu YH, Mazzola M (2001) Impact of carbon starvation on stress resistance, survival in soil habitats and biocontrol ability of Pseudomonas putida strain 2C8. Soil Biol Biochem 33:1155–1162

    Article  CAS  Google Scholar 

  • Guo Y, Zheng H, Yang Y, Wang H (2007) Characterization of Pseudomonas corrugata strain P94 isolated from soil in Beijing as a potential biocontrol agent. Curr Microbiol 55:247–253

    Article  CAS  PubMed  Google Scholar 

  • Haas D, Défago D (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J 219:1–14

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hamon MA, Lazazzera BA (2001) The sporulation transcription factor Spo0A is required for biofilm development in Bacillus subtilis. Mol Microbiol 42:1199–1209

    Article  CAS  PubMed  Google Scholar 

  • Hoffland E, Findenegg GR, Nelemans JA (1989) Solubilization of rock phosphate by rape. 1. Evaluation of the role of the nutrient-up take pattern. Plant Soil 113:155–160

    Article  CAS  Google Scholar 

  • Kamilova F, Kravchenko LV, Shaposhnikov AI, Azarova T, Makarova N, Lugtenberg B (2006) Organic acids, sugars and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Mol Plant Microbe Interact 19:250–256

    Article  CAS  PubMed  Google Scholar 

  • Katsuwon J, Anderson AJ (1989) Response of plant-colonizing Pseudomonads to hydrogen peroxide. Appl Environ Microbiol 55:2985–2989

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kim YJ, Hwang BK, Park KW (1989) Expression of age-related resistance in pepper plants infected with Phytophthora capsici. Plant Dis 73:745–747

    Article  Google Scholar 

  • Kim HS, Sang MK, Jeun YC, Hwang BK, Kim KD (2008) Sequential selection and efficacy of antagonistic rhizobacteria for controlling Phytophthora blight of pepper. Crop Prot 27:436–443

    Article  Google Scholar 

  • Kim HS, Sang MK, Myung IS, Chun SC, Kim KD (2009) Characterization of Bacillus luciferensis strain KJ2C12 from pepper root, a biocontrol agent of Phytophthora blight of pepper. Plant Pathol J 25:62–69

    Article  CAS  Google Scholar 

  • Kim HS, Sang MK, Jung HW, Jeun YC, Myung IS, Kim KD (2012) Identification and characterization of Chryseobacterium wanjuense strain KJ9C8 as a biocontrol agent against Phytophthora blight of pepper. Crop Prot 32:129–137

    Article  Google Scholar 

  • Kuzniak E, Urbanek H (2000) The involvement of hydrogen peroxide in plant responses to stresses. ACTA Physiol Plant 22:195–203

    Article  CAS  Google Scholar 

  • Lamour KH, Hausbeck MK (2000) Mefenoxam insensitivity and the sexual stage of Phytophthora capsici in Michigan cucurbit fields. Phytopathology 90:396–400

    Article  CAS  PubMed  Google Scholar 

  • Larkin RP, Fravel DR (1998) Efficacy of various fungal and bacterial biocontrol organisms for control of Fusarium wilt of tomato. Plant Dis 82:1022–1028

    Article  Google Scholar 

  • Levene H (1960) Contributions to probability and statistics: essays in honor of Harold Hotelling. Stanford University Press, Stanford, USA

    Google Scholar 

  • Lugtenberg BJJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490

    Article  CAS  PubMed  Google Scholar 

  • McSpadden Gardener BB (2007) Diversity and ecology of biocontrol Pseudomonas spp. in agricultural systems. Phytopathology 97:221–226

    Article  PubMed  Google Scholar 

  • O’Toole GA, Pratt LA, Watnick PI, Newman DK, Weaver VB, Kolter R (1999) Genetic approaches to study of biofilms. Methods Enzymol 310:91–109

    Article  PubMed  Google Scholar 

  • Peng M, Kuc J (1992) Peroxidase-generated hydrogen peroxide as a source of antifungal activity in vitro and on tobacco leaf disks. Phytopathology 82:696–699

    Article  CAS  Google Scholar 

  • Ramey BE, Koutsoudis M, von Bodman SB, Fuqua C (2004) Biofilm formation in plant-microbe associations. Curr Opin Microbiol 7:602–609

    Article  CAS  PubMed  Google Scholar 

  • Ristaino JB, Johnston SA (1999) Ecologically based approaches to management of Phytophthora blight on bell pepper. Plant Dis 83:1080–1089

    Article  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, USA

    Google Scholar 

  • Sang MK, Kim KD (2012) The volatile-producing Flavobacterium johnsoniae strain GSE09 shows biocontrol activity against Phytophthora capsici in pepper. J Appl Microbiol 113:383–398

    Article  CAS  PubMed  Google Scholar 

  • Sang MK, Chun SC, Kim KD (2008) Biological control of Phytophthora blight of pepper by antagonistic rhizobacteria selected from a sequential screening procedure. Biol Control 46:424–433

    Article  Google Scholar 

  • Sang MK, Kim JG, Kim KD (2010) Biocontrol activity and induction of systemic resistance in pepper by compost water extracts against Phytophthora capsici. Phytopathology 100:774–783

    Article  PubMed  Google Scholar 

  • Sang MK, Kim EN, Han GD, Kwack MS, Jeun YC, Kim KD (2014) Priming-mediated systemic resistance in cucumber induced by Pseudomonas azotoformans GC-B19 and Paenibacillus elgii MM-B22 against Colletotrichum orbiculare. Phytopathology doi:10.1094/PHYTO-11-13-0305-R

  • Schmidt CS, Agostini F, Leifert C, Killham K, Mullins CE (2004) Influence of inoculum density of the antagonistic bacteria Pseudomonas fluorescens and Pseudomonas corrugata on sugar beet seedling colonisation and suppression of Pythium damping off. Plant Soil 265:111–122

    Article  CAS  Google Scholar 

  • Schnürer J, Rosswall T (1982) Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Appl Environ Microbiol 43:1256–1261

    PubMed Central  PubMed  Google Scholar 

  • Simons M, van der Bij AJ, Brand I, de Weger LA, Wijffelman CA, Lugtenberg BJ (1996) Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria. Mol Plant Microbe Interact 9:600–607

    Article  CAS  PubMed  Google Scholar 

  • Timmusk S, Wagner EGH (1999) The plant-growth-promoting rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant Microbe Interact 12:951–959

    Article  CAS  PubMed  Google Scholar 

  • Timmusk S, Grantcharova N, Wagner EGH (2005) Paenibacillus polymyxa invades plant roots and forms biofilms. Appl Environ Microbiol 71:7292–7300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Turnbull GA, Morgan JAW, Whipps JM, Saunders JR (2001a) The role of motility in the in vitro attachment of Pseudomonas putida PaW8 to wheat roots. FEMS Microbiol Ecol 35:57–65

    Article  CAS  PubMed  Google Scholar 

  • Turnbull GA, Morgan JAW, Whipps JM, Saunders JR (2001b) The role of bacterial motility in the survival and spread of Pseudomonas fluorescens in soil and in the attachment and colonisation of wheat roots. FEMS Microbiol Ecol 36:21–31

    Article  CAS  PubMed  Google Scholar 

  • Weller DM (2007) Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97:250–256

    Article  PubMed  Google Scholar 

  • Yang CH, Crowley DE (2000) Rhizosphere microbial community structure in relation to root location and plant iron nutritional status. Appl Environ Microbiol 66:345–351

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by Korea University and the Agricultural R&D Promotion Center (Grant No. 105132-3). We thank Dr. I. S. Myung, NAAS, RDA for technical help in SEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ki Deok Kim.

Additional information

Handling Editor: Jesus Mercado Blanco

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sang, M.K., Kim, K.D. Biocontrol activity and root colonization by Pseudomonas corrugata strains CCR04 and CCR80 against Phytophthora blight of pepper. BioControl 59, 437–448 (2014). https://doi.org/10.1007/s10526-014-9584-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-014-9584-9

Keywords

Navigation