Abstract
Linaria vulgaris Mill. (Plantaginaceae), common or yellow toadflax, is a Eurasian short-lived perennial forb invasive throughout temperate North America. Rhinusa pilosa (Gyllenhal) (Coleoptera, Curculionidae) is a univoltine shoot-galling weevil found exclusively on L. vulgaris in Europe. Under no-choice test conditions, 13 non-native Linaria species exposed to R. pilosa were accepted for oviposition and most were found to be suitable, to varying degrees, for gall and larval development. Adult feeding and survival was minimal on native North American species in the plant tribe Antirrhineae which includes the target plant. In no-choice tests with 63 native North American species and 24 other non-target species outside Linaria, oviposition was limited to four native North American species. Only three larvae developed to the adult stage on Sairocarpus virga (A. Gray) D.A. Sutton, with no negative impact on plant growth. Risks to native flora from the release of R. pilosa are therefore expected to be minimal. The Technical Advisory Group for the Biological Control of Weeds (TAG—BCW) has recommended release of R. pilosa in September 2013.
This is a preview of subscription content, access via your institution.

References
Albach DC, Meudt HM, Oxelman B (2005) Piecing together the “new” Plantaginaceae. Am J Bot 92:297–315
Bakshi TS, Coupland RT (1960) Vegetative propagation in Linaria vulgaris. Can J Bot 38:243–249
Barnewall EC (2011) Plant-insect interactions between yellow toadflax, Linaria vulgaris, and a potential biocontrol agent, the gall-forming weevil, Rhinusa pilosa. M.Sc. Thesis, University of Lethbridge, Lethbridge, AB, Canada
Barnewall EC, De Clerck-Floate RA (2012) A preliminary histological investigation of gall induction in an unconventional galling system. Arthropod Plant Interact 6:449–459
Boswell A (2013) Development of PCR-RFP and DNA barcoding chloroplast markers for yellow toadflax and Dalmatian toadflax. M.S. Thesis, Colorado State University, Fort Collins, CO, USA
Briese DT (2005) Translating host-specificity test results into the real world: the need to harmonize the yin and yang of current testing procedures. Biol Control 35:208–214
Caldara R (2001) Phylogenetic analysis and higher classification of the tribe Mecinini (Coleoptera: Curculionidae, Curculioninae). Koleopterol Rundsch 71:171–203
Caldara R, Desančić M, Gassmann A, Legarreta L, Emerson BC, Toševski I (2008) On the identity of Rhinusa hispida (Brullé) and its current synonyms (Coleoptera: Curculionidae). Zootaxa 1805:61–68
Caldara RD, Sassi D, Toševski I (2010) Phylogeny of the weevil genus Rhinusa Stephens based on adult morphological characters and host plant information (Coleoptera: Curculionidae). Zootaxa 2627:39–56
Chater AD, Valdés B, Webb DA (1972) Linaria Miller. In: Tutin TG, Heywood VH, Burgess NA, Walters SM, Webb DA (eds) Flora Europaea, vol 3. Cambridge University Press, Cambridge, UK, pp 226–236
De Clerck-Floate RA, Harris P (2002) Linaria dalmatica (L.) Miller, Dalmatian toadflax (Scrophulariaceae). In: Mason PG, Huber JT (eds) Biological control programmes in Canada, 1981–2000. CABI Publishing, Wallingford, UK, pp 368–374
De Clerck-Floate RA, McClay AS (2013) Linaria vulgaris Mill., yellow toadflax (Plantaginaceae). In: Mason PG, Gillespie DR (eds) Biological control programmes in Canada 2001–2012. CABI Publishing, Wallingford, UK, pp 354–362
De Clerck-Floate RA, Richards KW (1997) Pollination ecology and biocontrol: developing release strategies for seed feeding insects on Dalmatian toadflax. Acta Hortic 437(379):384
De Clerck-Floate RA, Turner SC (2013) Linaria dalmatica (L.), Mill., Dalmatian toadflax (Plantaginaceae). In: Mason PG, Gillespie DR (eds) Biological control programmes in Canada 2001–2012. CABI Publishing, Wallingford, UK, pp 342–353
Estes D, Small RL (2008) Phylogenetic relationships of the monotypic genus Amphianthus (Plantaginaceae tribe Gratioleae) inferred from chloroplast DNA sequences. Syst Bot 33:176–182
Fernández-Mazuecos M, Blanco-Pastor JL, Vargas P (2013) A phylogeny of toadflaxes (Linaria Mill.) based on nuclear ITS sequences: systematic and evolutionary consequences. Int J Plant Sci 174:234–249
Gaskin JF, Bon M-C, Cock MJW, Cristofaro C, Biase A, De Clerck-Floate RA, Ellison CA, Hinz HL, Hufbauer RA, Julien MH, Sforza R (2011) Applying molecular-based approaches to classical biological control of weeds. Biol Control 58:1–21
Ghebrehiwet M, Bremer B, Thulin M (2000) Phylogeny of the tribe Antirrhineae (Scrophulariaceae) based on morphological and ndhF sequence data. Plant Syst Evol 220:223–239
Harris P (1963) Host specificity of Calophasia lunula (Hufn.) (Lepidoptera: Noctuidae). Can Ent 95:101–105
Hoffmann A (1958) Faune de France, vol. 62: Coleoptères, Curculionidae. In: Lechevalier P (ed) Paris, France, pp 1264–1311
Lohse GA, Tischler T (1983) Die Kafer Mitteleuropas. Bd. 11: Curculionidae. In: Freude H, Harde KW, Lohse GA (eds) Goecke & Evers, Krefeld, Germany, p 260–271
Mack RN (2003) Plant naturalizations and invasions in the eastern United States: 1634–1860. Ann Mo Bot Gard 90:77–90
McClay AS, De Clerck-Floate RA (2002) Linaria vulgaris Miller, common toadflax (Scrophulariaceae). In: Mason PG, Huber JT (eds) Biological control programmes in Canada, 1981–2000. CABI Publishing, Wallingford, UK, pp 375–382
Mimeur J-M (1949) Contribution à l’ètude des zoocécidies du Maroc. Mémoire hors série de la Société des Sciences naturelles du Maroc Paul Lechevalier, Paris, France
Missouri Botanical Garden (http://www.missouribotanicalgarden.org/PlantFinder/PlantFinderDetails.aspx?kempercode=a242. Accessed 20 Dec 2013
Nadeau L, King JR (1991) Seed dispersal and seedling establishment of Linaria vulgaris Mill. Can J Plant Sci 71:771–782
Olmstead RG, dePamphilis CW, Wolfe AD, Young ND, Elisons WJ, Reeves PA (2001) Disintegration of the Scrophulariaceae. Am J Bot 88:348–361
Saner MA, Clements DR, Hall MR, Doohan DJ, Crompton CW (1995) The biology of Canadian weeds. 105. Linaria vulgaris Mill. Can J Plant Sci 75:525–537
Sing SE, Peterson RKD, Weaver DK, Hansen RW, Markin GP (2005) A retrospective analysis of known and potential risks associated with exotic toadflax-feeding insects. Biol Control 35:276–287
Sutton DA (1988) A revision of the tribe Antirrhineae. British Museum (Natural History), London, UK
Tank DC, Beardsley PM, Kelchner SA, Olmstead RG (2006) L.A.S. Johnson Review No. 7: review of the systematics of Scrophulariaceae s.l. and their current disposition. Aust Syst Bot 19:289–307
Turner MFS (2012) Viability and invasive potential of hybrids between yellow toadflax (Linaria vulgaris) and Dalmatian toadflax (Linaria dalmatica). Ph.D. Dissertation, Colorado State University. Fort Collins, CO, USA
USDA, NRCS (2013) The PLANTS Database. National Plant Data Team, Greensboro, NC, USA. (http://plants.usda.gov. Accessed 10 Aug 2013)
Vargas P, Rosselló JA, Oyama R, Güemes J (2004) Molecular evidence for naturalness of genera in the tribe Antirrhineae (Scrophulariaceae) and three independent evolutionary lineages form the New World and the Old. Plant Syst Evol 249:151–172
Vujnovic K, Wein RW (1997) The biology of Canadian weeds. 106. Linaria dalmatica (L.) Mill. Can J Plant Sci 77:483–491
Wapshere AJ (1974) A strategy for evaluating the safety of organisms for biological weed control. Ann Appl Biol 77:201–211
Ward SM, Fleischmann CE, Turner MF, Sing SE (2009) Hybridization between invasive populations of Dalmatian toadflax (Linaria dalmatica) and yellow toadflax (Linaria vulgaris). Invasive Plant Sci Manage 2:369–378
Wilson LM, Sing SE, Piper GL, Hansen RW, De Clerck-Floate RA, MacKinnon DK, Randall CB (2005) Biology and biological control of dalmatian and yellow toadflax. USDA Forest Service, FHTET-05-13, Morgantown, USA
Acknowledgments
We are most grateful for the laboratory assistance of J. Jović in Serbia, and E. Barnewall, E. Pavlik and C. Durand in Canada. R. Caldara (Milano, Italy) is acknowledged for his important contribution to the classical taxonomy of Rhinusa, and B. Emerson, G. Hernández-Vera and L. Legarreta (University of East Anglia, Norwich) whose timely molecular analyses resolved key issues related to the phylogeny of Rhinusa pilosa and relatives. Funding for this research was enabled by the Toadflax Biological Control Consortium, through long-persistent support and interest from Agriculture and Agri-Food Canada, British Columbia Ministry of Forests, Lands and Natural Resource Operations, British Columbia Ministry of Agriculture, California Department of Food and Agriculture, Montana Noxious Weed Trust Fund (through Montana State University), USDA Forest Service Rocky Mountain Research Station, USDA APHIS PPQ Center for Plant Health Science and Technology, and Wyoming Biological Control Steering Committee.
Author information
Authors and Affiliations
Corresponding author
Additional information
Handling Editor: John Scott.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Gassmann, A., De Clerck-Floate, R., Sing, S. et al. Biology and host specificity of Rhinusa pilosa, a recommended biological control agent of Linaria vulgaris . BioControl 59, 473–483 (2014). https://doi.org/10.1007/s10526-014-9578-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10526-014-9578-7
Keywords
- Common toadflax
- Yellow toadflax
- Curculionidae
- Host range tests
- Pre-release studies
- Biological control of weeds