BioControl

, Volume 59, Issue 3, pp 357–366 | Cite as

Thermal tolerance of Cyrtobagous salviniae: a biocontrol agent in a changing world

Article

Abstract

The weevil Cyrtobagous salviniae Calder & Sands 1985 (Family: Curculionidae) is a highly effective biocontrol agent for the invasive water fern Salvinia molesta D.S. Mitchell (Family: Salviniaceae). The life histories of both organisms are affected by temperature, making the potential impacts of climate change on efficacy of control an important area in which comprehensive understanding is required. Here we use warming tolerance (WT) and low temperature tolerance (LTT) as measures of C. salviniae’s sensitivity to climate warming, calculated across South Africa using critical thermal limits, lethal temperature limits and mean maximum (Tmax) and minimum (Tmin) environmental temperatures under present climatic conditions and two future periods (2040s and 2080s). From the present climate to the 2080s the WTs of C. salviniae decrease and LTTs increase indicating C. salviniae may face greater constraints on survival as Tmax nears the upper thermal limits, but increased population persistence over cool months as Tmin increases.

Keywords

Cyrtobagous salviniae Curculionidae Lethal temperature limits Critical thermal tolerance Biological control Invasive alien species 

Supplementary material

10526_2014_9570_MOESM1_ESM.docx (202 kb)
Supplementary material 1 (DOCX 202 kb)

References

  1. Allen JL, Clusella-Trullas S, Chown SL (2012) The effects of acclimation and rates of temperature change on critical thermal limits in Tenebrio molitor (Tenebrionidae) and Cyrtobagous salviniae (Curculionidae). J Insect Physiol 58:669–678CrossRefPubMedGoogle Scholar
  2. Angilletta MJ (2009) Thermal adaptation: a theoretical and empirical synthesis. Oxford University Press, Oxford, UKCrossRefGoogle Scholar
  3. Araújo MB, Ferri-Yáñez F, Bozinovic F, Marquet PA, Valladares F, Chown SL (2013) Heat freezes niche evolution. Ecol Lett 16:1206–1219CrossRefPubMedGoogle Scholar
  4. Bale JS, Hayward SAL (2010) Insect overwintering in a changing climate. J Exp Biol 213:980–994CrossRefPubMedGoogle Scholar
  5. Bivand R (2012) classInt: choose univariate class intervals. R package version 0.1-19. http://CRAN.R-project.org/package=classInt. Accessed 06 Feb 2013
  6. Bivand R, Lewin-Koh N (2013) maptools: tools for reading and handling spatial objects. R Package Version 0.8-23. http://CRAN.R-project.org/package=maptools. Accessed 06 May 2013
  7. Chown SL, Slabber S, McGeoch MA, Janion C, Leinaas HP (2007) Phenotypic plasticity mediates climate change responses among invasive and indigenous arthropods. Proc R Soc B 274:2531–2567PubMedCentralCrossRefPubMedGoogle Scholar
  8. Chown SL, Jumbam KR, Sørensen JG, Terblanche JS (2009) Phenotypic variance, plasticity and heritability estimates of critical thermal limits depend on methodological context. Funct Ecol 23:133–140CrossRefGoogle Scholar
  9. Cilliers CJ (1991) Biological control of the water fern, Salvinia molesta (Salviniaceae), in South Africa. Agric Ecosyst Environ 37:219–224CrossRefGoogle Scholar
  10. Clusella-Trullas S, Blackburn TM, Chown SL (2011) Climatic predictors of temperature performance curve parameters in ectotherms imply complex responses to climate change. Am Nat 177:738–751CrossRefPubMedGoogle Scholar
  11. Coetzee JA, Hill MP, Byrne MJ, Bownes A (2011) A review of the biological control programmes on Eichhornia crassipes (C.Mart) Solms (Pontederiaceae), Salvinia molesta D.S.Mitch. (Salviniaceae), Pistia stratiotes L. (Araceae), Myriophyllum aquaticum (Vell.) Verdc. (Haloragaceae) and Azolla filiculoides Lam. (Azollaceae) in South Africa. Afr Entomol 19:451–468CrossRefGoogle Scholar
  12. Core Team R (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  13. Crawley MJ (2007) The R Book. Wiley, Chichester, UKCrossRefGoogle Scholar
  14. Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci USA 105:6668–6672PubMedCentralCrossRefPubMedGoogle Scholar
  15. Diop O, Hill MP (2009) Quantitative post-release evaluation of biological control of floating fern, Salvinia molesta D.S. Mitchell (Salviniaceae), with Cyrtobagous salviniae Calder and Sands (Coleoptera: Curculionidae) on the Senegal River and Senegal River Delta. Afr Entomol 17:64–70CrossRefGoogle Scholar
  16. Forno IW, Bourne AS (1986) Temperature-related effects of three insects on growth of Salvinia molesta in Brazil. Entomophaga 31:19–26CrossRefGoogle Scholar
  17. Forno IW, Harley KLS (1979) The occurrence of Salvinia molesta in Brazil. Aquat Bot 6:185–187CrossRefGoogle Scholar
  18. Forno IW, Sands DPA, Sexton W (1983) Distribution, biology and host specificity of Cyrtobagous singularis Hustache (Coleoptera: Curculionidae) for the biological control of Salvinia molesta. Bull Entomol Res 73:85–95CrossRefGoogle Scholar
  19. Hellmann JJ, Byers JE, Bierwagen BG, Dukes JS (2008) Five potential consequences of climate change for invasive species. Conserv Biol 22:534–543CrossRefPubMedGoogle Scholar
  20. Hennecke B, Postle LA (2006) The key to success: an investigation into oviposition of the Salvinia weevil in cool climate regions. In: Preston C, Watts JH, Crossman ND (eds) 15th Australian weeds conference, papers and proceedings, September 2006, Adelaide, Australia, pp 780–783Google Scholar
  21. Hijmans RJ, van Etten J (2012) raster: Geographic data analysis and modelling. R package version 2.0-41. http://CRAN.R-project.org/package=raster. Accessed 11 Feb 2013
  22. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  23. Hoffmann AA, Sgrò CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485CrossRefPubMedGoogle Scholar
  24. Jacono CC (1999) Salvinia molesta (Salviniaceae) new to Texas and Louisiana. SIDA Contrib Bot 18:927–928Google Scholar
  25. Keitt T (2012) colorRamps: builds color tables. R package version 2.3. http://CRAN.R-project.org/package=colorRamps. Accessed 15 July 2013
  26. Keitt TH, Bivand R, Pebesma E, Rowlingson B (2013) rgdal: Bindings for the Geospatial Data Abstraction Library. R package version 0.8-4. http://CRAN.R-project.org/package=rgdal. Accessed 06 Feb 2013
  27. Kingsolver JG, Diamond SE, Buckley LB (2013) Heat stress and the fitness consequences of climate change for terrestrial ectotherms. Funct Ecol 27:1415–1423CrossRefGoogle Scholar
  28. Kruger AC, Sekele SS (2013) Trends in extreme temperature indices in South Africa: 1962-2009. Int J Climatol 33:661–676CrossRefGoogle Scholar
  29. Kruger AC, McBride C, Thiaw WM (2011) Southern Africa regional climate. In: Blunden J, Arndt DS, Brainger MO (eds) State of the Climate 2010. Bull Am Meteorol Soc 92:S161–S163Google Scholar
  30. Le Maitre DC, de Lange WJ, Richardson DM, Wise RM, van Wilgen BW (2011) The economic consequences of the environmental impacts of alien plant invasions in South Africa. In: Pimental D (ed) Biological invasions: economic and environmental costs of alien plant, animal and microbe species (2nd edn). CRC Press, Taylor & Francis Group, Boca Raton, USA, pp 295–323Google Scholar
  31. Naidu KC, Muzila I, Tyolo I, Katorah G (2000) Biological control of Salvinia molesta in some areas of Moremi Game Reserve, Botswana. Afr J Aquat Sci 25:152–155CrossRefGoogle Scholar
  32. Neuwirth E (2011) RColorBrewer: ColorBrewer palettes. R package version 1.0-5. http://CRAN.R-project.org/package=RColorBrewer. Accessed 17 Jan 2013
  33. Pebesma EJ, Bivand RS (2005) Classes and methods for spatial data in R. R News 5 (2). http://cran.r-project.org/doc/Rnews/. Accessed 06 May 2013
  34. Stocker T, Dahe Q, Plattner, G-K (2013) Climate change 2013: the physical basis technical summary. IPCC Fifth Assessment Report, Geneva, SwitzerlandGoogle Scholar
  35. Rivers-Moore NA, Mantel S, Dallas HF (2012) Prediction of water temperature metrics using spatial modelling in the Eastern and Western Cape, South Africa. Water SA 38:167–176CrossRefGoogle Scholar
  36. Room PM (1986) Equations relating growth and uptake of nitrogen by Salvinia molesta to temperature and the availability of nitrogen. Aquat Bot 24:43–59CrossRefGoogle Scholar
  37. Room PM (1990) Ecology of a simple plant-herbivore system: biological control of Salvinia. Trends Ecol Evol 5:74–79CrossRefPubMedGoogle Scholar
  38. Sands DPA, Schotz M, Bourne AS (1983) The feeding characteristics and development of larvae of a Salvinia weevil Cyrtobagous sp. Entomol Exp Appl 34:291–296CrossRefGoogle Scholar
  39. van Driesche RG, Carruthers RI, Center T, Hoddle MS, Hough-Goldstein J, Morin L, Smith L, Wagner DL, Blossey B, Brancatini V, Casagrande R, Causton CE, Coetzee JA, Cuda J, Ding J, Fowler SV, Frank JH, Fuester R, Goolsby J, Grodowitz M, Heard TA, Hill MP, Hoffmann JH, Huber J, Julien M, Kairo MTK, Kenis M, Mason P, Medal J, Messing R, Miller R, Moore A, Neuenschwander P, Newman R, Norambuena H, Palmer WA, Pemberton R, Perez Panduro A, Pratt PD, Rayamajhi M, Salom S, Sands D, Schooler S, Schwarzländer M, Sheppard A, Shaw R, Tipping PW, van Klinken RD (2010) Classical biological control for the protection of natural ecosystems. Biol Control 54:S2–S33CrossRefGoogle Scholar
  40. Whiteman JB, Room PM (1991) Temperatures lethal to Salvinia molesta Mitchell. Aquat Bot 40:27–35CrossRefGoogle Scholar

Copyright information

© International Organization for Biological Control (IOBC) 2014

Authors and Affiliations

  • J. L. Allen
    • 1
  • S. Clusella-Trullas
    • 1
  • S. L. Chown
    • 2
  1. 1.Centre for Invasion Biology, Department of Botany and ZoologyStellenbosch UniversityMatielandSouth Africa
  2. 2.School of Biological SciencesMonash UniversityClaytonAustralia

Personalised recommendations