Skip to main content
Log in

Relationship between endospore viability and insecticidal potency of Bacillus thuringiensis subsp. aizawai NT0423

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

Bioassay can be used for analysis of the biological potency of Bacillus thuringiensis (Bt) in fermentation and formulation but requires precise scheduling and several repetitions. Alternatively, this work explored if the endospore counting could be used to predict the potency of Bt technical powder. Analyses of Bt technical powers provided a strong linear relationship (r = 0.971) between the number of viable endospores and the potency of the technical powder against second instar Plutella xylostella (L.) larvae. Next, a Bt wettable powder formulation was stored at 25 and 40 °C for 12 weeks to investigate the influence of storage temperature on the prediction of insecticidal potency based on the counting. At 25 °C storage, the insecticidal potency could be predicted based on the counting, but at 40 °C the predicted insecticidal potency was much lower than the measured potency. These results suggest that the NT0423 endospore viability can be used to predict its potency in production, but the relationship may not be the same following the storage at high temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bertrand G, Filiatre C, Mahdjoub H, Foissy A, Coddet C (2003) Influence of slurry characteristics on the morphology of spray dried alumina powders. J Eur Ceram Soc 23:263–271

    Article  CAS  Google Scholar 

  • Burges HD (1998) Formulation of microbial biopesticides: beneficial microorganisms, nematodes and seed treatment. Kluwer Academic, Dordrecht, The Netherlands

  • Carvalho AS, Silva J, Ho P, Teixeira P, Malcata FX, Gibbs P (2004) Effects of various sugars added to growth and drying media upon thermotolerance and survival throughout storage of freeze-dried Lactobacillus delbrueckii ssp. blugaricus. Biotechnol Prog 20:248–254

    Article  CAS  PubMed  Google Scholar 

  • Copping LG (2004) The manual of biocontrol agents, 3rd edn. BCPC, Hampshire, UK

  • Guerzoni ME, Ferruzzi M, Sinigaglia M, Criscuoli GC (1997) Increased cellular fatty acid desaturation as a possible key factor in thermotolerance in Saccharomyces cerevisiae. Can J Microbiol 43:569–576

    Article  CAS  PubMed  Google Scholar 

  • Guerzoni ME, Lanciotti R, Cocconcelli PS (2001) Alteration in cellular fatty acid composition as a response to salt, acid, oxidative and thermal stresses in Lactobacillus helveticus. Microbiology 147:2255–2264

    CAS  PubMed  Google Scholar 

  • Huang F, Leonard R, Moore S, Yue B, Parker R, Reagan T, Stout M, Cook D, Akbar W, Chilcutt C, White W, Lee D, Biles S (2008) Geographical susceptibility of Louisiana and Texas populations of the sugarcane borer, Diatraea saccharalis (F.) (Lepidoptera: Crambidae) to Bacillus thuringiensis Cry1Ab protein. Crop Prot 27:799–806

    Article  Google Scholar 

  • Kankaanpää P, Yang B, Kallio H, Isolauri E, Salminen S (2004) Effects of polyunsaturated fatty acids in growth medium on lipid composition and on physicochemical surface properties of Lactobacilli. Appl Environ Microbiol 70:129–136

    Article  PubMed  Google Scholar 

  • Kim JS, Je YH (2012) Milling effect on the control efficacy of spray-dried Bacillus thuringiensis technical powder against diamondback moths. Pest Manag Sci 68:321–323

    Article  CAS  PubMed  Google Scholar 

  • Kim HS, Park HW, Kim SH, Yu YM, Seo SJ, Kang SK (1993) Dual specificity of δ-endotoxins produced by newly isolated Bacillus thuringiensis NT0423. Korean J Appl Entomol 32:426–432

    Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Li H, Bouwer G (2012) The larvicidal activity of Bacillus thuringiensis cry proteins against Thaumatotibia leucotreta (Lepidoptera: Tortricidae). Crop Prot 32:47–53

    Article  Google Scholar 

  • Lindquist S (1986) The heat-shock response. Annu Rev Biochem 55:1151–1191

    Article  CAS  PubMed  Google Scholar 

  • Navon A (2000) Bioassay of Bacillus thuringiensis products used against agricultural pests. In: Navon A, Ascher KRS (eds) Bioassays of entomopathogenic microbes and nematodes. CAB International, Wallingford, UK, pp 1–72

    Chapter  Google Scholar 

  • Pérez-Guerrero S, Aldebis HK, Vargas-Osuna E (2011) Toxicity of several δ-endotoxins of Bacillus thuringiensis against the cotton pest Earias insulana (Lepidoptera: Noctuidae). Crop Prot 30:1024–1027

    Article  Google Scholar 

  • Poonperm W, Takata G, Izumori K (2008) Polyol conversion specificity of Bacillus pallidus. Biosci Biotechnol Biochem 72:231–235

    Article  CAS  PubMed  Google Scholar 

  • Russell NJ, Fukunaga N (1990) A comparison of thermal adaptation of membrane lipids in psychrophilic and thermophilic bacteria. FEMS Microbiol Rev 75:171–182

    Article  CAS  Google Scholar 

  • Schiraldi C, Di Lernia I, De Rosa M (2002) Trehalose production: exploiting novel approaches. Trends Biotechnol 20:420–425

    Article  CAS  PubMed  Google Scholar 

  • Schlesinger MJ (1986) Heat shock proteins: the search for functions. J Cell Biol 103:321–325

    Article  CAS  PubMed  Google Scholar 

  • Schnepf E, Crickmore N, van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol 62:775–806

    CAS  Google Scholar 

  • Shen B, Hohmann S, Jensen RG, Bohnert H (1999) Roles of sugar alcohol in osmotic stress adaptation: replacement of glycerol by mannitol and sorbitol in yeast. Plant Physiol 121:45–52

    Article  CAS  PubMed  Google Scholar 

  • Singer MA, Lindquist S (1998) Multiple effects of trehalose on protein folding in vitro and in vivo. Mol Cell 1:639–648

    Article  CAS  PubMed  Google Scholar 

  • Tang JD, Shelton AM, van Rie J, De Roeck S, Moar WJ, Roush RT, Peferoen M (1996) Toxicity of Bacillus thuringiensis spore and crystal protein to resistant diamondback moth (Plutella xylostella). Appl Environ Microbiol 62:564–569

    CAS  PubMed  Google Scholar 

  • Xueyong Z, Jiamping D, Jianbao G, Ziniu Y (2008) Activity-loss characteristic of spores of Bacillus thuringiensis during spray drying. Food Bioprod Process 86:37–42

    Article  Google Scholar 

  • Yang XM, Wang SS (1998) Development of Bacillus thuringiensis fermentation and process control from a practical perspective. Biotechnol Appl Biochem 28:95–98

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Bong-Jin Chung in Dongbu Hannong Co (Republic of Korea) for assistance with Bt analyses and Dr. Dong-Soo Yang (Abson BCL Inc., Republic of Korea) for technical assistance in the fermentation and spray-drying of Bt NT0423. This research was supported by Bio-industry Technology Development Program, Ministry for Food, Agriculture, Forestry and Fisheries, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Su Kim.

Additional information

Handling Editor: Helen Roy

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, J.S., Lee, S.J., Skinner, M. et al. Relationship between endospore viability and insecticidal potency of Bacillus thuringiensis subsp. aizawai NT0423. BioControl 58, 607–614 (2013). https://doi.org/10.1007/s10526-013-9527-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-013-9527-x

Keywords

Navigation