Skip to main content
Log in

Use of beneficial bacteria and their secondary metabolites to control grapevine pathogen diseases

  • Review
  • Published:
BioControl Aims and scope Submit manuscript

Abstract

Grapevine is one of the most important economic crops yielding berries, wine products as well as derivates. However, due to the large array of pathogens inducing diseases on this plant, considerable amounts of pesticides—with possible negative impact on the environment and health—have been used and are currently used in viticulture. To avoid negative impacts of such products and to ensure product quality, a substantial fraction of pesticides needs to be replaced in the near future. One solution can be related to the use of beneficial bacteria inhabiting the rhizo- and/or the endosphere of plants. These biocontrol bacteria and their secondary metabolites can reduce directly or indirectly pathogen diseases by affecting pathogen performance by antibiosis, competition for niches and nutrients, interference with pathogen signaling or by stimulation of host plant defenses. Due to the large demand for biocontrol of grapevine diseases, such biopesticides, their modes of actions and putative consequences of their uses need to be described. Moreover, the current knowledge on new strains from the rhizo- and endosphere and their metabolites that can be used on grapevine plants to counteract pathogen attack needs to be discussed. This is in particular with regard to the control of root rot, grey mould, trunk diseases, powdery and downy mildews, pierce’s disease, grapevine yellows as well as crown gall. Future prospects on specific beneficial microbes and their secondary metabolites that can be used as elicitors of plant defenses and/or as biocontrol agents with potential use in a more sustainable viticulture will be further discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdalla MA, Win HY, Islam MT, von Tiedemann A, Schuffler A, Laatsch H (2011) Khatmiamycin, a motility inhibitor and zoosporicide against the grapevine downy mildew pathogen Plasmopara viticola from Streptomyces sp. ANK313. J Antibiot 64:655–659

    PubMed  CAS  Google Scholar 

  • Agüero CB, Uratsu SL, Greve C, Powell ALT, Labavitch JM, Meredith CP, Dandekar AM (2005) Evaluation of tolerance to Pierce’s disease and Botrytis in transgenic plants of Vitis vinifera L. expressing the pear PGIP gene. Mol Plant Pathol 6:43–51

    PubMed  Google Scholar 

  • Ait Barka E, Belarbi A, Hachet C, Nowak J, Audran JC (2000) Enhancement of in vitro growth and resistance to gray mould of Vitis vinifera co-cultured with plant growth promoting rhizobacteria. FEMS Microbiol Lett 186:91–95

    Google Scholar 

  • Ait Barka E, Gognies S, Nowak J, Audran JC, Belarbi A (2002) Inhibitory effect of bacteria on Botrytis cinerea and its influence to promote the grapevine growth. Biol Control 24:135–142

    Google Scholar 

  • Alfonzo A, Conigliaro G, Torta L, Burruano S, Moschetti G (2009) Antagonism of Bacillus subtilis strain AG1 against vine wood fungal pathogens. Phytopathol Med 48:155–158

    CAS  Google Scholar 

  • Allègre M, Héloir M-C, Trouvelot S, Daire X, Pugin A, Wendehenne D, Adrian M (2009) Are grapevine stomata involved in the elicitor-induced protection against downy mildew? Mol Plant-Microbe Interact 22:977–986

    PubMed  Google Scholar 

  • Almeida RPP, Wistrom C, Hill BL, Hashim J, Purcell AH (2005) Vector transmission of Xylella fastidiosa to dormant grape. Plant Dis 89:419–424

    Google Scholar 

  • Amaro P, Mexia A (2003) The pesticides very toxic to man, to natural enemies, to honey bees and to aquatic life must be prohibited or rigorously restricted for IPM in viticulture. Bull OILB/SROP 26:277–282

    Google Scholar 

  • Auger J, Esterio M, Ricke G, Pérez I (2004) Black dead arm and basal cankers of Vitis vinifera cv. Red Globe caused by Botryosphaeria obtusa in Chile. Plant Dis 88:1286

    Google Scholar 

  • Baumgartner K, Warren JG (2005) Persistence of Xylella fastidiosa in riparian hosts near northern California vineyards. Plant Dis 89:1097–1102

    Google Scholar 

  • Bell CR, Dickie GA, Harvey WLG, Chan JWYF (1995) Endophytic bacteria in grapevine. Can J Microbiol 41:46–53

    CAS  Google Scholar 

  • Bent E (2006) Induced systemic resistance mediated by plant growth-promoting rhizobacteria (PGPR) and fungi (PGPF). In: Tuzun S, Bent E (eds) Multigenic and induced systemic resistance in plants. Springer, New York, USA, pp 225–258

  • Berg G (2009) Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18

    PubMed  CAS  Google Scholar 

  • Bester W, Crous PW, Fourie PH (2007) Evaluation of fungicides as potential grapevine pruning wound protectants against Botryosphaeria species. Aust J Plant Pathol 36:73–77

    CAS  Google Scholar 

  • Bulgari D, Casati P, Crepaldi P, Daffonchio D, Quaglino F, Brusetti L, Bianco PA (2001) Restructuring of endophytic bacterial communities in grapevine yellows-diseased and recovered Vitis vinifera L. plants. Appl Environ Microbiol 77:5018–5022

    Google Scholar 

  • Burr TJ, Otten L (1999) Crown gall of grape: biology and disease management. Annu Rev Phytopathol 37:53–80

    PubMed  CAS  Google Scholar 

  • Burr TJ, Reid CL (1994) Biological control of grape crown gall with nontumorigenic Agrobacterium vitis strain F2/5. Am J Enol Vitic 45:213–219

    Google Scholar 

  • Burr TJ, Reid CL, Tagliati E, Bazzi C, Süle S (1997) Biological control of grape crown gall by strain F2/5 is not associated with agrocin production or competition for attachment sites on grape cells. Phytopathology 87:706–711

    PubMed  CAS  Google Scholar 

  • Carter MV (1991) The status of Eutypa lata as a pathogen. monograph—phytopathological paper no. 32. International Mycological Institute, Surrey, UK

  • Carter MV, Price TV (1974) Biological control of Eutypa armeniacae. II. Studies of the interaction between E. armeniacae and Fusarium lateritium, and their relative sensitivities to benzimidazole chemicals. Aust J Agric Res 25:105–119

    CAS  Google Scholar 

  • Castillo-Pando M, Somers A, Green CD, Priest M, Sriskanthades M (2001) Fungi associated with dieback of Semillon grapevines in the Hunter Valley of New South Wales. Aust Plant Pathol 30:59–63

    Google Scholar 

  • Chatterjee S, Almeida RPP, Lindow SE (2008) Living in two worlds: the plant and insect lifestyles of Xylella fastidiosa. Annu Rev Phytopathol 46:243–271

    PubMed  CAS  Google Scholar 

  • Chen F, Guo YB, Wang JH, Li JY, Wang HM (2007) Biological control of grape crown gall by Rahnella aquatilis HX2. Plant Dis 91:957–963

    CAS  Google Scholar 

  • Chen F, Li JY, Guo YB, Wang JH, Wang HM (2009) Biological control of grapevine crown gall: purification and partial characterisation of an antibacterial substance produced by Rahnella aquatilis strain HX2. Eur J Plant Pathol 124:427–437

    CAS  Google Scholar 

  • Chiarappa L (2000) Esca (black measles) of grapevine. An overview. Phytopathol Med 39:11–15

    Google Scholar 

  • Christen D, Tharin M, Perrin-Cherioux S, Abou-Mansour E, Tabacchi R, Defago G (2005) Transformation of eutypa dieback and esca disease pathogen toxins by antagonistic fungal strains reveals a second detoxification pathway not present in Vitis vinifera. J Agric Food Chem 53:7043–7051

    PubMed  CAS  Google Scholar 

  • Compant S (2011) Editorial : lutte biologique des agents pathogènes de la vigne avec des bactéries symbiotiques, une avancée pour nos vignobles ? Rev Oenol 140:7–8

    Google Scholar 

  • Compant S, Mathieu F (2011) Biocontrol des maladies de la vigne avec des microbes bénéfiques. Une alternative à la chimie de synthèse en viticulture. Rev Oenol 141(hors série):25

    Google Scholar 

  • Compant S, Duffy B, Nowak J, Clément C, Ait Barka E (2005a) Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl Environ Microbiol 71:4951–4959

    PubMed  CAS  Google Scholar 

  • Compant S, Reiter B, Sessitsch A, Nowak J, Clément C, Ait Barka E (2005b) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol 71:1685–1693

    PubMed  CAS  Google Scholar 

  • Compant S, Kaplan H, Sessitsch A, Nowak J, Ait Barka E, Clément C (2008a) Endophytic colonization of Vitis vinifera L. by Burkholderia phytofirmans strain PsJN: from the rhizosphere to inflorescence tissues. FEMS Microbiol Ecol 63:84–93

    PubMed  CAS  Google Scholar 

  • Compant S, Nowak J, Coenye T, Clément C, Ait Barka E (2008b) Diversity and occurrence of Burkholderia spp. in the natural environment. FEMS Microbiol Rev 32:607–626

    PubMed  CAS  Google Scholar 

  • Compant S, Clément C, Sessitsch A (2010a) Plant growth-promoting bacteria in the rhizo- and endosphere of plants. Their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    CAS  Google Scholar 

  • Compant S, van der Heijden M, Sessitsch A (2010b) Climate change effects on beneficial plant-microbes interactions. FEMS Microbiol Ecol 73:197–214

    PubMed  CAS  Google Scholar 

  • Compant S, Mathieu F, Lebrihi A (2011) Biocontrol de Botrytis cinerea par des bactéries bénéfiques de la rhizosphère ou de l’endosphère. Rev Oenol 141:15–16

    Google Scholar 

  • Compant S, Sessitsch A, Mathieu F (2012) The 125th anniversary for the first postulation of soil derived endophytic bacteria—a tribute to MLV Galippe. Plant Soil 356:299–301

    CAS  Google Scholar 

  • Constable FE (2010) Phytoplasma epidemiology: grapevines as a model. In: Weintraub PG, Jones P (eds) Phytoplasmas: genomes, plant hosts and vectors. CAB International, Oxfordshire, UK, pp 188–212

  • Creasap J, Reid C, Goffinet M, Aloni R, Ullrich C, Burr T (2005) Effect of wound position, auxin, and Agrobacterium vitis strain F2/5 on wound healing and crown gall in grapevine. Phytopathology 95:362–367

    PubMed  CAS  Google Scholar 

  • D`Amelio R R, Berta G, Gamalero E, Massa N, Avidano L, Cantamessa S, D`Agostino G, Bosco D, Marzachi C (2011) Increased plant tolerance against chrysanthemum yellows phytoplasma (Candidatus Phytoplasma asteris) following double inoculation with Glomus mosseae BEG12 and Pseudomonas putida S1Pf1Rif. Plant Pathol 60:1014–1022

    Google Scholar 

  • Andrade ER de (1993) Ocorrência de espécies do gênero Fusarium em solo cultivado com videira (Vitis spp.) em Santa Catarina. Fitopatol Brasil 18:502–505 (Abstract in Rev Plant Pathol 74:657)

    Google Scholar 

  • Eastwell KC, Sholberg PL, Sayler RJ (2006) Characterizing potential bacterial biocontrol agents for suppression of Rhizobium vitis, causal agent of crown gall disease in grapevines. Crop Prot 25:1191–1200

    Google Scholar 

  • Escobar MA, Dandekar AM (2003) Agrobacterium tumefaciens as an agent of disease. Trends Plant Sci 8:380–386

    PubMed  CAS  Google Scholar 

  • FAOSTAT (2011) http://faostat.fao.org

  • Ferreira JHS, Matthee FN, Thomas AC (1991) Biological control of Eutypa lata on grapevine by an antagonistic strain of Bacillus subtilis. Phytopathology 81:283–287

    Google Scholar 

  • Ferreira RB, Monteiro SS, Piçarra-Pereira MA, Teixeira AR (2004) Engineering grapevine for increased resistance to fungal pathogens without compromising wine stability. Trends Biotechnol 22:168–173

    PubMed  CAS  Google Scholar 

  • Ficke A, Gadoury DM, Seem RC (2002) Ontogenic resistance and plant disease management: a case study of grape powdery mildew. Phytopathology 92:671–675

    PubMed  Google Scholar 

  • Fourie P, Halleen F (2006) Chemical and biological protection of grapevine propagation material. Eur J Plant Pathol 116:255–265

    CAS  Google Scholar 

  • Gadoury DM, Cadle-Davidson L, Wilcox WF, Dry IB, Seem RC, Milgroom MG (2012) Grapevine powdery mildew (Erysiphe necator): a fascinating system for the study of the biology, ecology and epidemiology of an obligate biotroph. Mol Plant Pathol 13:1–16

    PubMed  Google Scholar 

  • Gamalero E, D’Amelio R, Musso C, Cantamessa S, Pivato B, D’Agostino G, Duan J, Bosco D, Marzachi C, Berta G (2010) Effects of Pseudomonas putida S1Pf1Rif against Chrysanthemum yellows Phytoplasma infection. Phytopathology 100:805–813

    PubMed  Google Scholar 

  • Gessler C, Pertot I, Perazzolli M (2011) Plasmopara viticola: a review of knowledge on downy mildew of grapevine and effective disease management. Phytopathol Med 50:3–44

    Google Scholar 

  • Gouadec D, Blouin J (2007) Les parasites de la vigne. Stratégies de protection raisonnée. Dunod, France

  • Gramaje D, Armengol J (2011) Fungal trunk pathogens in the grapevine propagation process: potential inoculum sources, detection, identification and management strategies. Plant Dis 95:1040–1055

    Google Scholar 

  • Granett J, Omer AD, Pessereau P, Walker MA (1998) Fungal infections of grapevine roots in phylloxera-infested vineyards. Vitis 37:39–42

    Google Scholar 

  • Graniti A, Surico G, Mugnai L (2000) Esca of grapevine: a disease complex or a complex of diseases? Phytopathol Mediterr 39:16–20

    Google Scholar 

  • Grasso S (1984) Infezioni di Fusarium oxysporum e di Cylindrocarpon destructans associate a una moria di giovani piante di vite in Sicilia. Inform Fitopatol 34:59–63

    Google Scholar 

  • Gubler WD, Baumgartner K, Browne GT, Eskalen A, Latham SR, Petit E, Bayramian LA (2004) Root diseases of grapevines in California and their control. Aust Plant Pathol 33:157–165

    Google Scholar 

  • Gubler WD, Rolshausen PE, Trouillas FP, Úrbez-Torres JR, Voegel T, Leavitt GM, Weber EA (2005) Grapevine trunk diseases in California. Pract Winery Vineyard (Jan/Feb):6–25

  • Gugino BK, Travis JW, Stewart EL (2001) Pathogenicity of Fusarium spp., Cylindrocarpon sp. and a Diplodina sp. on grape roots. Phytopathology 91(Suppl)S34

  • Guo YB, Li J, Li L, Chen F, Wu W, Wang J, Wang H (2009) Mutations that disrupt either the pqq or the gdh gene of Rahnella aquatilis abolish the production of an antibacterial substance and result in reduced biological control of grapevine crown gall. Appl Environ Microbiol 75:6792–6803

    PubMed  CAS  Google Scholar 

  • Halleen F, Fourie PH, Lombard PJ (2010) Protection of grapevine pruning wounds against Eutypa lata by biological and chemical methods. S Afr J Enol Vitic 31:125–132

    CAS  Google Scholar 

  • Hallmann J (2001) Plant interactions with endophytic bacteria. In: Jeger MJ, Spence NJ (eds) Biotic interactions in plant–pathogen associations. CABI Publishing, Wallingford, UK, pp 87–119

  • Hallmann J, Berg B (2007) Spectrum and population dynamics of bacterial root endophytes. In: Schulz BJE, Boyle CJC, Sieber TN (eds) Microbial root endophytes. Springer, Berlin, Germany, pp 15–31

  • Hartmann A, Rothballer M, Schmid M (2008) Lorenz Hiltner, a pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant Soil 312:7–14

    CAS  Google Scholar 

  • Highet AS, Nair NG (1995) Fusarium oxysporum associated with grapevine decline in the Hunter Valley, NSW, Australia. Aust J Grape Wine Res 1:48–50

    Google Scholar 

  • Hiltner L (1904) Über neue Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriologie und unter besonderer Berücksichtigung der Gründüngung und Brache. Arb Deutsch Landwirtschafts-Gesellschaft 98:59–78

  • Hopkins DL (1989) Xylella fastidiosa: xylem-limited bacterial pathogen of plants. Annu Rev Phytopathol 27:271–290

    Google Scholar 

  • Hopkins DL (2005) Biological control of Pierce’s disease in the vineyard with strains of Xylella fastidiosa benign to grapevine. Plant Dis 89:1348–1352

    Google Scholar 

  • John S, Scott ES, Wicks TJ, Hunt JS (2004) Interaction between Eutypa lata and Trichoderma harzianum. Phytopathol Med 43:95–104

    Google Scholar 

  • Kawaguchi A (2008) Biological control of crown gall of grapevine, rose, and tomato by nonpathogenic Agrobacterium vitis strain VAR03-1. Phytopathology 98:1218–1225

    PubMed  CAS  Google Scholar 

  • Kawaguchi A, Inoue K, Nasu H (2005) Inhibition of crown gall formation by Agrobacterium radiobacter biovar 3 strains isolated from grapevine. J Gen Plant Pathol 71:422–430

    Google Scholar 

  • Kawaguchi A, Inoue K, Nasu H (2007) Biological control of grapevine crown gall by nonpathogenic Agrobacterium vitis strain VAR03-1. J Gen Plant Pathol 73:133–138

    Google Scholar 

  • Khmel IA, Sorokina TA, Lemanova NB, Lipasova VA, Metlitski OZ, Burdeinaya TV, Chernin LS (1998) Biological control of crown gall in grapevine and raspberry by two Pseudomonas spp. with a wide spectrum of antagonistic activity. Bio Sci Technol 8:45–57

    Google Scholar 

  • Kiss L (2003) A review of fungal antagonists of powdery mildews and their potential as biocontrol agents. Pest Man Sci 59:475–483

    CAS  Google Scholar 

  • Kloepper JW, Ryu C-M, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266

    PubMed  CAS  Google Scholar 

  • Kotze C (2008) Biological control of the grapevine trunk disease pathogens: pruning wound protection. Master thesis, University of Stellenbosch, South Africa

    Google Scholar 

  • Krol E (1998) Epiphytic bacteria isolated from grape leaves and its effect on Botrytis cinerea Pers. Phytopathol Pol 16:53–61

    Google Scholar 

  • Larignon P, Dubos B (2001) The villainy of black dead arm. Wines Vines 82:86–89

    Google Scholar 

  • LdR Garrido, Sônego OR, Gomes VN (2004) Fungi associated with grapevine showing decline and plant death in the state of Rio Grande do Sul, Southern Brazil. Fitopatol Bras 29:322–324

    Google Scholar 

  • Leavitt GM (1990) The occurrence, distribution, effects and control of Botryodiplodia theobromae on Vitis vinifera in California, Arizona and northern Mexico. Ph.D. dissertation, University of California, Riverside, USA

  • Lebrihi A, Errakhi R, Barakate M (2009a) New Streptomyces barakatei strain, culture filtrate, derived active compounds and use thereof in the treatment of plants. Patent WO/2009/156687

  • Lebrihi A, Errakhi R, Barakate M (2009b) New Streptomyces beta-vulgaris strain, culture filtrate, derived active compounds and use thereof in the treatment of plants. Patent WO/2009/156688

  • Lehman LJ, Mccoy RJ, Messenger BJ, Manker DC, Orjala JE, Lindhard D, Marrone PG, Jimenez DR (2000) A strain of Bacillus pumilus for controlling plant diseases. Patent WO/2000/058442

  • Lehoczky J (1974) Black dead arm disease of grapevine caused by Botryosphaeria stevensii infection. Acta Phytopathol Hung 9:319–327

    Google Scholar 

  • Leroux P (2003) Modes d’action des produits phytosanitaires sur les organismes pathogènes des plantes. Compt Rend Biol 326:9–21

    CAS  Google Scholar 

  • Leroux P (2004) Chemical control of Botrytis and its resistance to chemical fungicides. In: Elad Y, Williamson B, Tudzynski P, Delen N (eds) Botrytis: biology, pathology and control. Kluwer, Dordrecht, The Nertherlands, pp 195–222

  • Lingua G, D’Agostino G, Massa N, Antosiano M, Berta G (2002) Mycorrhiza-induced differential response to a yellows disease in tomato. Mycorrhiza 12:191–198

    PubMed  Google Scholar 

  • Lo Picollo S, Ferraro V, Alfonzo A, Settanni L, Ercolini D, Burruano S, Moschetti G (2010) Presence of endophytic bacteria in Vitis vinifera leaves as detected by fluorescence in situ hybridization. Ann Microbiol 60:161–167

    Google Scholar 

  • Loqman S, Barka EA, Clement C, Ouhdouch Y (2009) Antagonistic actinomycetes from Moroccan soil to control the grapevine gray mold. World J Microbiol Biotechnol 25:81–91

    Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    PubMed  CAS  Google Scholar 

  • Luque J, Martos S, Phillips AJL (2005) Botryosphaeria viticola sp. nov. on grapevines: a new species with a Dothiorella anamorph. Mycologia 97:1111–1121

    PubMed  CAS  Google Scholar 

  • Magnin-Robert M, Trotel-Aziz P, Quantinet D, Biagianti S, Aziz A (2007) Biological control of Botrytis cinerea by selected grapevine-associated bacteria and stimulation of chitinase and b-1,3 glucanase activities under field conditions. Eur J Plant Pathol 118:43–57

    CAS  Google Scholar 

  • Maixner M (2011) Recent advances in Bois Noir research. In: 2nd European bois noir workshop 2011. Coop. Libraria Editrice Universita di Padova, Italy, pp 17–32

  • Marrone PG, Heins SD, Jimenez DR (1999) Methods for controlling above-ground plant diseases using antibiotic-producing Bacillus sp. ATCC 55608 or 55609. US Patent US005869042A

  • Marshall A (2009) 13.3 million farmers cultivate GM crops. Nature Biotechnol 27:221–221

    Google Scholar 

  • Mostert L, Halleen F, Fourie P, Crous PW (2006) A review of Phaeoacremonium species involved in Petri disease and esca of grapevines. Phytopathol Mediterr 45:S12–S29

    Google Scholar 

  • Munkvold GP, Marois JJ (1993) Efficacy of natural epiphytes and colonizers of grapevine pruning wounds for biological control of Eutypa dieback. Phytopathology 83:624–629

    Google Scholar 

  • Nowak J, Asiedu SK, Lazarovits G, Pillay V, Stewart A, Smith C, Liu Z (1995) Enhancement of in vitro growth and transplant stress tolerance of potato and vegetable plantlets co-cultured with a plant growth-promoting rhizobacterium. In: Carré F, Chagvardieff P (eds) Proceedings of the international symposium on ecophysiology and photosynthetic in vitro cultures. CEA, Aix-en-Provence, France, pp 173–180

  • Omer AD, Granett J, Wakeman RJ (1999) Pathogenicity of Fusarium oxysporum on different Vitis rootstocks. J Phytopathol 147:433–436

    Google Scholar 

  • Paul B, Girard I, Bhatnagar T, Bouchet P (1997) Suppression of Botrytis cinerea causing grey mould disease of grape vine (Vitis vinifera) and its pectinolytic activities by a soil bacterium. Microbiol Res 152:413–420

    CAS  Google Scholar 

  • Pearson RC, Goheen AC (eds) (1988) APS. Compendium of grape diseases. APS Press, St Paul, USA

  • Pezet R, Viret O, Gindro K (2004) Plant-microbe interaction: the Botrytis grey mould of grapes-biology, biochemistry, epidemiology and control management. In: Hemantaranjan A (ed) Advances in plant physiology, vol 7. Scientific publishers, Jodhpur, India, pp 71–116

  • Phillips AJL (1998) Botryosphaeria dothidea and other fungi associated with excoriose and dieback of grapevines in Portugal. J Phytophatol 146:327–332

    Google Scholar 

  • Phillips AJL (2002) Botryosphaeria species associated with diseases of grapevines in Portugal. Phytopathol Mediterr 41:3–18

    Google Scholar 

  • Qin S, Xing K, Jiang J-H, Xu L-H, Li W-J (2011) Biodiversity, bioactive natural products and biotechnological potential of plant-associated endophytic actinobacteria. Appl Microbiol Biotechnol 89:457–473

    PubMed  CAS  Google Scholar 

  • Ridé M (1996) La nécrose bactérienne de la vigne: données biologiques et épidémiologiques, bases d’une stratégie de lutte. Compt Rend Acad Agri France 82:31–50

    Google Scholar 

  • Riedle-Bauer M, Sara A, Regner F (2008) Transmission of a stolbur Phytoplasma by the Agalliinae leafhopper Anaceratagallia ribauti (Hemiptera, Auchenorrhyncha, Cicadellidae). J Phytopathol 156:687–690

    Google Scholar 

  • Riethmueller A, Voglmayr H, Goeker M, Weiss M, Oberwinkler F (2002) Phylogenetic relationships of the downy mildews (Peronosporales) and related groups based on nuclear large subunit ribosomal DNA sequences. Mycologia 94:834–849

    CAS  Google Scholar 

  • Rolshausen PE, Gubler WD (2005) Use of boron for the control of Eutypa dieback of grapevines. Plant Dis 89:734–738

    CAS  Google Scholar 

  • Rolshausen PE, Mahoney NE, Molyneux RJ, Gubler WD (2006) A re-assessment of the species concept in Eutypa lata, the causal agent of Eutypa dieback of grapevine. Phytopathology 96:369–377

    PubMed  CAS  Google Scholar 

  • Romanazzi G, d’Ascenzo D, Murolo S (2009) Field treatment with resistance inducers for the control of grapevine Bois Noir. J Plant Pathol 91:677–682

    Google Scholar 

  • Rovesti L, Montermini A (1987) A grapevine decline caused by Sphaeropsis malorum widespread in the province of Reggio-Emilia. Inf Fitopatol 37:59–61

    Google Scholar 

  • Sawant SD, Sawant IS, Shetty D, Shinde M, Jade S, Waghmare M (2011) Control of powdery mildew in vineyards by Milastin K, a commercial formulation of Bacillus subtilis (KTBS). J Biol Control 25:26–32

    Google Scholar 

  • Schmidt CS, Wolf GA, Lorenz D, Jaèger J (2001) Biological control of the grapevine dieback fungus Eutypa lata, II.: influence of formulation additives, transposon mutagenesis on the antagonistic activity of Bacillus subtilis, Erwinia herbicola. J Phytopathol 149:437–445

    Google Scholar 

  • Schoonbeek H-J, Jacquat-Bovet A-C, Mascher F, Métraux J-P (2007) Oxalate-degrading bacteria can protect Arabidopsis thaliana and crop plants against Botrytis cinerea. Mol Plant-Microbe Interact 20:1535–1544

    PubMed  CAS  Google Scholar 

  • Seemüller E, Harries H (2010) Plant resistance. In: Weintraub PG, Jones P (eds) Phytoplasmas: genomes, plant hosts and vectors. CAB International, Oxfordshire, UK, pp 147–169

  • Sessitsch A, Coenye T, Sturz AV, Vandamme P, Ait Barka E, Salles JF, van Elsas JD, Faure D, Reiter B, Glick BR, Wang-Pruski G, Nowak J (2005) Burkholderia phytofirmans sp. nov., a novel plant-associated bacterium with plant beneficial properties. Int J Syst Evol Bacteriol 55:1187–1192

    CAS  Google Scholar 

  • Shim JS, Farrand SK, Kerr A (1987) Biological control of crown gall: construction and testing of new biocontrol agents. Phytopathology 77:463–466

    CAS  Google Scholar 

  • Stafford HA (2000) Crown gall disease and Agrobacterium tumefaciens: a study of the history, present knowledge, missing information, and impact on molecular genetics. Bot Rev 66:99–118

    Google Scholar 

  • Strobel GA, Morrison SL, Cassella M (2005) Protecting plants from oomycete pathogens by treatment with compositions containing Serratamolide and Oocydin A from Serratia marcescens. US Patent US006926892B2

  • Sule S, Burr TJ (1998) The influence of rootstock resistance to crown gall (Agrobacterium spp.) on the susceptibility of scions in grape vine cultivars. Plant Pathol 47:84–88

    Google Scholar 

  • Surico G, Mugnai L, Marchi G (2008) The esca disease complex. In: Mukerji KG, Ciancio A (eds) Integrated management of diseases caused by fungi, phytoplasma and bacteria. University of Delhi, Delhi, India, pp 119–136

  • Svercel M, Christen D, Moënne-Loccoz Y, Duffy B, Défago G (2009) Effect of long-term vineyard monoculture on rhizosphere populations of pseudomonads carrying the antimicrobial biosynthetic genes phlD and/or hcnAB. FEMS Microbiol Ecol 68:25–36

    PubMed  CAS  Google Scholar 

  • Svercel M, Hamelin J, Duffy B, Moënne-Loccoz Y, Défago G (2010) Distribution of Pseudomonas populations harboring phlD or hcnAB biocontrol genes is related to depth in vineyard soils. Soil Biol Biochem 42:466–472

    CAS  Google Scholar 

  • The Local Monitoring Committee, Lemaire O, Moneyron A, Masson JE (2010) Interactive technology assessment and beyond: the field trial of genetically modified grapevines at INRA-Colmar. PLoS Biol 8:e1000551

    Google Scholar 

  • Trotel-Aziz P, Aziz A, Magnin-Robert M, Aït Barka E, Gogniès S (2006) Bactéries présentant une activité protectrice de la vigne contre Botrytis cinerea. French patent 06.06.513

  • Trotel-Aziz P, Couderchet M, Biagianti S, Aziz A (2008) Characterization of new bacterial biocontrol agents Acinetobacter, Bacillus, Pantoea and Pseudomonas spp. mediating grapevine resistance against Botrytis cinerea. Environ Exp Bot 64:21–32

    Google Scholar 

  • Trouillas FP, Gubler WD (2004) Identification and characterization of Eutypa leptoplaca, a new pathogen of grapevine in Northern California. Mycol Res 108:1195–1204

    PubMed  CAS  Google Scholar 

  • Trouillas FP, Gubler WD (2010) Pathogenicity of Diatrypaceae species in grapevines in California. Plant Dis 94:867–872

    Google Scholar 

  • Trouillas FP, Urbez-Torres JR, Gubler WD (2010) Diversity of diatrypaceous fungi associated with grapevine canker diseases in California. Mycologia 102:319–336

    PubMed  CAS  Google Scholar 

  • Urbez-Torres JR, Gubler WD (2009) Pathogenicity of Botryosphaeriaceae species isolated from grapevine cankers in California. Plant Dis 93:584–592

    Google Scholar 

  • Úrbez-Torres JR, Peláez H, Santiago Y, Martín C, Moreno C, Gubler WD (2006) Occurrence of Botryosphaeria obtusa, B. dothidea, and B. parva associated with grapevine trunk diseases in Castilla y León region, Spain. Plant Dis 90:835

  • van der Ent S, van Wees SCM, Pieterse CMJ (2009) Jasmonate signaling in plant interactions with resistance-inducing beneficial microbes. Phytochemistry 70:1581–1588

    PubMed  Google Scholar 

  • van Helden M (2008) Protection intégrée: La protection intégrée vis-à-vis des ravageurs de la vigne. In: Kreiter S (ed) Ravageurs de la vigne. Féret, France, pp 321–335

  • van Loon L (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254

    Google Scholar 

  • van Loon LC (2008) Manipulating the plant’s innate immune system by inducing resistance. Phytoparasitica 36:103–106

    Google Scholar 

  • van Loon LC, Bakker PAHM (2005) Induced systemic resistance as a mechanism of disease suppression by rhizobacteria. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, The Netherlands, pp 39–66

  • van Niekerk JM, Crous PW, Groenewald JZ, Fourie PH, Halleen F (2004) DNA phylogeny, morphology and pathogenicity of Botryosphaeria species on grapevines. Mycologia 96:781–798

    PubMed  Google Scholar 

  • van Wees SC, van der Ent S, Pieterse CM (2008) Plant immune responses triggered by beneficial microbes. Curr Opin Plant Biol 11:443–448

    PubMed  Google Scholar 

  • Varnier AL, Sanchez L, Vatsa P, Boudesocque L, Garcia-Brugger A, Rabenoelina F, Sorokin A, Renault JH, Kauffmann S, Pugin A, Clément C, Baillieul F, Dorey S (2009) Bacterial rhamnolipids are novel MAMPs conferring resistance to Botrytis cinerea in grapevine. Plant, Cell Environ 32:178–193

    CAS  Google Scholar 

  • Verhagen BWM, Trotel-Aziz P, Couderchet M, Höfte M, Aziz A (2010) Pseudomonas spp.-induced systemic resistance to Botrytis cinerea is associated with induction and priming of defence responses in grapevine. J Exp Bot 61:249–260

    PubMed  CAS  Google Scholar 

  • Verhagen BWM, Trotel-Aziz P, Jeandet P, Baillieul F, Aziz A (2011) Improved resistance against Botrytis cinerea by grapevine-associated bacteria that induce a prime oxidative burst and phytoalexin Production. Phytopathology 101:768–777

    PubMed  CAS  Google Scholar 

  • Vidal JR, Kikkert JR, Malnoy MA, Wallace PG, Barnard J, Reisch BI (2006) Evaluation of transgenic ‘Chardonnay’ (Vitis vinifera) containing magainin genes for resistance to crown gall and powdery mildew. Trans Res 15:69–82

    CAS  Google Scholar 

  • Wei Q, Li J-Y, Wang J-H, Wang H-M (2009) Strain E26 of Agrobacterium vitis, a biological control agent of grapevine crown gall, does not contain virA and virG pathogenic determinants. J Phytopathol 157:657–665

    CAS  Google Scholar 

  • Welbaum G, Sturz AV, Dong Z, Nowak J (2004) Fertilizing soil microorganisms to improve productivity of agroecosystems. Crit Rev Plant Sci 23:175–193

    CAS  Google Scholar 

  • Zhang L, Zhang G, Qian X, Li G (2009) First report of Verticillium wilt of grapevine (Vitis vinifera) caused by Verticillium dahliae in China. Plant Dis 93:841

    Google Scholar 

  • Zhang S, Flores CZ, Kumar D, Chakrabarty P, Hopkins DL, Gabriel DW (2011) The Xylella fastidiosa biocontrol strain EB92-1 genome is very similar and syntenic to Pierce’s disease strains. J Bacteriol 193:5576–5577

    PubMed  CAS  Google Scholar 

  • Ziedan E-SH, El-Mohamedy RSR (2008) Application of Pseudomonas fluorescens for controlling root-rot disease of grapevine. Res J Agric Biol Sci 4:346–353

    Google Scholar 

  • Ziedan ESH, Farrag ES, El-Mohamedy RS, Abd Alla MA (2010) Streptomyces alni as a biocontrol agent to root-rot of grapevine and increasing their efficiency by biofertilisers inocula. Arch Phytopathol Plant Prot 43:634–646

    CAS  Google Scholar 

  • Ziedan E-SH, Embaby E-SM, Farrag ES (2011) First record of Fusarium vascular wilt on grapevine in Egypt. Arch Phytopathol Plant Prot 44:1719–1727

    Google Scholar 

Download references

Acknowledgments

This work was supported by a BQR program from National Polytechnic Institute of Toulouse, France, regional projects in Midi-Pyrénées, a “FUI” project from Ministry of France as well as by High Education Program from Pakistan that help us to work on biocontrol of plant diseases and in particular on grapevine infections, beneficial microbes and their metabolites of interest. We also acknowledge cost action FA1103 for helping cooperation and we are grateful to Anne Alibert (INP-ENSAT, France) for reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Compant.

Additional information

Stéphane Compant, Günter Brader, and Saima Muzammil contributed equally to this work.

Handling Editor: Jesus Mercado Blanco

Rights and permissions

Reprints and permissions

About this article

Cite this article

Compant, S., Brader, G., Muzammil, S. et al. Use of beneficial bacteria and their secondary metabolites to control grapevine pathogen diseases. BioControl 58, 435–455 (2013). https://doi.org/10.1007/s10526-012-9479-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-012-9479-6

Keywords

Navigation