BioControl

, Volume 57, Issue 6, pp 735–750 | Cite as

Could research in the native range, and non-target host range in Australia, have helped predict host range of the parasitoid Microctonus aethiopoides Loan (Hymenoptera: Braconidae), a biological control agent introduced for Sitona discoideus Gyllenhal (Coleoptera: Curculionidae) in New Zealand?

  • B. I. P. Barratt
  • R. G. Oberprieler
  • D. M. Barton
  • M. Mouna
  • M. Stevens
  • M. A. Alonso-Zarazaga
  • C. J. Vink
  • C. M. Ferguson
Article

Abstract

It is generally accepted that knowledge of the natural and novel host range of proposed biological control agents can help to inform predictions of potential host range in new areas of introduction. To test this hypothesis, this paper describes a retrospective study conducted to contrast and compare the natural host range of Microctonus aethiopoides Loan (Hymenoptera: Braconidae) with its novel host range found in Australia and New Zealand, where it has been introduced to control the adult stage of the weevil Sitona discoideus Gyllenhal (Coleoptera: Curculionidae), a pest of lucerne. Surveys carried out in and near lucerne crops in Morocco and Australia each resulted in collections of over 3,000 weevils, of which respectively 84 % and 93 % were S. discoideus. The host ranges determined from these surveys for each M. aethiopoides population were then compared with information already available for field host range in New Zealand. In Morocco, species in the genera Sitona and Charagmus (Curculionidae: Entiminae: Sitonini) and Hypera (Curculionidae: Hyperinae: Hyperini) were found to be parasitised by M. aethiopoides. In Australia, an earlier record of non-target parasitism of ‘Prosayleus’ sp. 2 (Curculionidae: Entiminae: Leptopiini) is still the only known instance of non-target parasitism by M. aethiopoides. The known non-target field host range in New Zealand is much greater, comprising 19 native and introduced weevil species mainly in the subfamily Entiminae (tribe Leptopiini) but also in Curculioninae, Cyclominae and Lixinae. This is discussed in the context of predictions that could have been made at the time of introduction 30 years ago had the Moroccan and Australian data, modern molecular technologies and current understanding of weevil classification been available. The absence of Leptopiini in Morocco and the record of a native Australian leptopiine host could have indicated that native weevils in this tribe in New Zealand might be at risk of attack by M. aethiopoides.

Keywords

Microctonus aethiopoides Loan Sitona discoideus Gyllenhal Parasitism Non-target parasitism Host range Native geographical range Biological control agent Morocco Australia New Zealand 

Supplementary material

10526_2012_9453_MOESM1_ESM.docx (26 kb)
Supplementary material 1 (DOCX 27 kb)

References

  1. Aeschlimann JP (1980) The Sitona (Col.: Curculionidae) species occurring on Medicago and their natural enemies in the Mediterranean region. Entomophaga 25:139–153CrossRefGoogle Scholar
  2. Aeschlimann JP (1983a) Notes on the variability of Microctonus aethiopoides Loan (Hymenoptera: Braconidae: Euphorinae). Contrib Am Entomol Inst 20:329–335Google Scholar
  3. Aeschlimann JP (1983b) Sources of importation, establishment and spread in Australia of Microctonus aethiopoides Loan (Hymenoptera: Braconidae), a parasitoid of Sitona discoideus Gyllenhal (Coleoptera: Curculionidae). J Aust Entomol Soc 22:325–331CrossRefGoogle Scholar
  4. Alonso-Zarazaga MA, Lyal CHC (1999) A world catalogue of families and genera of Curculionoidea (Insecta: Coleoptera). Entomopraxis, Barcelona, Spain, pp 315Google Scholar
  5. Barratt BIP (2004) Microctonus parasitoids and New Zealand weevils: comparing laboratory estimates of host ranges to realized host ranges. In: van Driesche RG, Reardon R (eds) Assessing host ranges for parasitoids and predators used for classical biological control: a guide to best practice. USDA Forest Service, Morgantown, USA, pp 103–120Google Scholar
  6. Barratt BIP, Johnstone PD (2001) Factors affecting parasitism by Microctonus aethiopoides Loan (Hymenoptera: Braconidae) and parasitoid development in natural and novel host species. Bull Entomol Res 91:245–253PubMedCrossRefGoogle Scholar
  7. Barratt BIP, Lowther WL, Ferguson CM (1995) Seed coating with insecticide to improve oversown white clover (Trifolium repens L.) establishment in tussock grassland. NZ J Agric Res 38:511–518CrossRefGoogle Scholar
  8. Barratt BIP, Evans AA, Ferguson CM, Barker GM, McNeill MR, Phillips CB (1997) Laboratory nontarget host range of the introduced parasitoids Microctonus aethiopoides and Microctonus hyperodae (Hymenoptera: Braconidae) compared with field parasitism in New Zealand. Environ Entomol 26:694–702Google Scholar
  9. Barratt BIP, Evans AA, Ferguson CM, McNeill MR, Addison P (2000) Phenology of native weevils (Coleoptera: Curculionidae) in New Zealand pastures and parasitism by the introduced braconid, Microctonus aethiopoides Loan (Hymenoptera: Braconidae). NZ J Zool 27:93–110CrossRefGoogle Scholar
  10. Barratt BIP, Oberprieler RG, Ferguson CM, Hardwick S (2005) Parasitism of the lucerne pest Sitona discoideus Gyllenhal (Coleoptera: Curculionidae) and non-target weevils by Microctonus aethiopoides Loan (Hymenoptera: Braconidae) in south-eastern Australia, with an assessment of the taxonomic affinities of non-target hosts of M. aethiopoides recorded from Australia and New Zealand. Aust J Entomol 44:192–200CrossRefGoogle Scholar
  11. Barratt BIP, Berndt LA, Dodd SL, Ferguson CM, Hill RH, Kean JM, Teulon DAJ, Withers TM (2007a). BIREA—biocontrol information resource for ERMA New Zealand Applicants. http://b3.net.nz/birea/index.php
  12. Barratt BIP, Ferguson CM, Bixley AS, Crook KE, Barton DM, Johnstone PD (2007b) Field parasitism of non-target weevil species (Coleoptera: Curculionidae) by the introduced biological control agent Microctonus aethiopoides Loan (Hymenoptera: Braconidae) over an altitude gradient. Environ Entomol 36:826–839PubMedCrossRefGoogle Scholar
  13. Bigler F, Bale JS, Cock MJW, Dreyer H, Greatrex U, Kuhlmann U, Loomans AJM, van Lenteren JC (2005) Guidelines on information requirements for import and release of invertebrate biological control agents in European countries. Bioc News Info 26:115N–123NGoogle Scholar
  14. Bremner G (1988) Ecological studies of the insect fauna of the East Otago Plateau Thesis. PhD Thesis, University of Otago, New ZealandGoogle Scholar
  15. Cullen JM, Hopkins DC (1982) Rearing, release and recovery of Microctonus aethiopoides Loan (Hymenoptera: Braconidae) imported for the control of Sitona discoideus Gyllenhal (Coleoptera: Curculionidae) in south eastern Australia. J Austr Entomol Soc 21:279–284CrossRefGoogle Scholar
  16. Day WH (1999) Host preferences of introduced and native parasites (Hymenoptera: Braconidae) of phytophagous plant bugs (Hemiptera: Miridae) in alfalfa-grass fields in the northeastern USA. BioControl 44:249–261CrossRefGoogle Scholar
  17. Food and Agriculture Organisation (1996) Code of conduct for the import and release of exotic biological control agents. Food and Agriculture Organisation, Rome, ItalyGoogle Scholar
  18. Gassmann A, Louda SM (2001) Rhinocyllus conicus: initial evaluation and subsequent ecological impacts in North America. In: Wajnberg E, Scott, JK, Quimby, PC (eds) Evaluating indirect ecological effects of biological control. CABI, Wallingford, UK, pp 147–183Google Scholar
  19. Goldson SL, Frampton ER, Barratt BIP, Ferguson CM (1984) The seasonal biology of Sitona discoideus Gyllenhal (Coleoptera: Curculionidae), an introduced pest of New Zealand lucerne. Bull Entomol Res 74:249–259CrossRefGoogle Scholar
  20. Goldson SL, Proffitt JR, McNeill MR (1990) Seasonal biology and ecology in New Zealand of Microctonus aethiopoides (Hymenoptera: Braconidae), a parasitoid of Sitona spp. (Coleoptera: Curculionidae), with special emphasis on atypical behaviour. J Appl Ecol 27:703–722CrossRefGoogle Scholar
  21. Goolsby JA, van Klinken RD, Palmer WA (2006) Maximizing the contribution of native-range studies towards the identification and prioritization of weed biological control agents (special issue: agent selection in weed biocontrol). Aust J Entomol 45:276–286Google Scholar
  22. Haye T, Goulet H, Mason PG, Kuhlmann U (2005) Does fundamental host range match ecological host range? A retrospective case study of a Lygus plant bug parasitoid. Biol Control 35:55–67CrossRefGoogle Scholar
  23. Hopkins DC (1982) Establishment and spread of the sitona weevil parasite Microctonus aethiopoides in South Australia. In: Lee KE (ed) Proceedings of the 3rd Australasian conference on grassland invertebrate ecology. CSIRO, Adelaide, Australia, pp 177–182Google Scholar
  24. Hundsdörfer AK, Rheinheimer J, Wink M (2009) Towards the phylogeny of the Curculionoidea (Coleoptera): reconstructions from mitochondrial and nuclear ribosomal DNA sequences. Zool Anz 248:9–31CrossRefGoogle Scholar
  25. Kuhlmann U, Mason PG (2003) Use of field host range surveys for selecting candidate non-target species for physiological host specificity testing of entomophagous biological control agents. In: van Driesche R (ed) International symposium on biological control of arthropods. USDA, Forest Service Honolulu, Hawaii, USA, pp 370–377Google Scholar
  26. Kuhlmann U, Schaffner U, Mason PG (2006) Selection of non-target species for host specificity testing. In: Bigler F, Babendreier D, Kuhlmann U (eds) Environmental impact of invertebrates for biological control of arthropods: methods and risk assessment. CABI, Wallinford, UK, pp 15–37CrossRefGoogle Scholar
  27. Loan CC (1975) A review of Haliday species of Microctonus (Hym. : Braconidae, Euphorinae). Entomophaga 20:31–41CrossRefGoogle Scholar
  28. Louda SM (2000) Negative ecological effects of the musk thistle biological control agent, Rhinocyllus conicus. In: Follett PA, Duan JJ (eds) Nontarget effects of biological control introductions. Kluwer, Norwell, USA, pp 213–243Google Scholar
  29. Marvaldi AE (1997) Higher level phylogeny of Curculionidae (Coleoptera: Curculionoidea) based mainly on larval characters, with special reference to broad-nosed weevils. Cladistics 13:285–312CrossRefGoogle Scholar
  30. Marvaldi AE (1998) Larvae of Entiminae (Coleoptera: Curculionidae): tribal diagnoses and phylogenetic key, with a proposal about natural groups within Entimini. Entomol Scand 29:89–98CrossRefGoogle Scholar
  31. Marvaldi AE, Lanteri AA, del Río MG, Oberprieler RG (in press) Entiminae Schoenherr 1823. In: Beutel RG, Leschen RAB (eds) Handbook of zoology vol IV, part 38, Coleoptera, Beetles, vol 3: morphology and systematics (Polyphaga partim). Walter de Gruyter, Berlin, GermanyGoogle Scholar
  32. Mason PG, Broadbent AB, Whistlecraft JW, Gillespie DR (2011) Interpreting the host range of Peristenus digoneutis and Peristenus relictus (Hymenoptera: Braconidae) biological control agents of Lygus spp. (Hemiptera: Miridae) in North America. Biol Control 57:94–102CrossRefGoogle Scholar
  33. McKenna DM, Sequeira AS, Marvaldi AE, Farrell BD (2009) Temporal lags and overlap in the diversification of weevils and flowering plants. Proc Nat Acad Sci 106:7083–7088PubMedCrossRefGoogle Scholar
  34. Morimoto K (1962) Key to families, subfamilies, tribes and genera of the superfamily Curculionoidea of Japan excluding Scolytidae, Platypodidae and Cossoninae (Comparative morphology, phylogeny and systematics of the superfamily Curculionoidea of Japan. III). J Fac Agric Kyushu Univ 12:21–66Google Scholar
  35. Morris MG (2002) True Weevils (Part I): family Curculionidae, subfamilies Raymondionyminae to Smicronychinae. Field Studies Council, London, UKGoogle Scholar
  36. Phillips CB, Vink CJ, Blanchet A, Hoelmer KA (2008) Hosts are more important than destinations: what genetic variation in Microctonus aethiopoides (Hymenoptera: Braconidae) means for foreign exploration for natural enemies. Mol Phylogenet Evol 49:467–476PubMedCrossRefGoogle Scholar
  37. Sheppard A, Haines ML, Thomann T (2006) Native-range research assists risk analysis for non-targets in weed biological control: the cautionary tale of the broom seed beetle. Aust J Entomol 45:292–297CrossRefGoogle Scholar
  38. Stufkens MW, Farrell JA, Goldson SL (1987) Establishment of Microctonus aethiopoides, a parasitoid of the sitona weevil in New Zealand. In: Popay AJ (ed) Proc 40th NZ weed and pest contr conf. NZ Weed Pest Contr Soc, Quality Inn, Nelson, New Zealand, pp 31–32Google Scholar
  39. Sundaralingam S, Hower AA, Kim KC (2001) Host selection and reproductive success of French and Moroccan populations of the parasitoid, Microctonus aethiopoides (Hymenoptera: Braconidae). BioControl 46:25–41CrossRefGoogle Scholar
  40. Thompson RT (1992) Observations on the morphology and classification of weevils (Coleoptera, Curculionidae) with a key to major groups. J Nat Hist 26:835–891CrossRefGoogle Scholar
  41. Velazquez De Castro AJ, Alonso-Zarazaga MA, Outerelo R (2007) Systematics of Sitonini (Coleoptera: Curculionidae: Entiminae), with a hypothesis on the evolution of feeding habits. Syst Entomol 32:312–331CrossRefGoogle Scholar
  42. Vink CJ, Barratt BIP, Phillips CB, Barton DM (2012) Moroccan specimens of Microctonus aethiopoides spice our understanding of genetic variation in this internationally important braconid parasitoid of adult weevils. BioControl (in press)Google Scholar
  43. Vink CJ, Phillips CB, Mitchell AD, Winder LM, Cane RP (2003) Genetic variation in Microctonus aethiopoides (Hymenoptera: Braconidae). Biol Control 28:251–264CrossRefGoogle Scholar
  44. Zherikhin VV, Egorov AB (1991) Weevils (Coleoptera, Curculionidae) of the U.S.S.R. Far East (a review of the subfamilies with description of new taxa). Biological-Pedological Institute, Vladivostok, RussiaGoogle Scholar

Copyright information

© International Organization for Biological Control (IOBC) 2012

Authors and Affiliations

  • B. I. P. Barratt
    • 1
  • R. G. Oberprieler
    • 2
  • D. M. Barton
    • 1
  • M. Mouna
    • 3
  • M. Stevens
    • 4
  • M. A. Alonso-Zarazaga
    • 5
  • C. J. Vink
    • 6
  • C. M. Ferguson
    • 1
  1. 1.AgResearch InvermayMosgielNew Zealand
  2. 2.CSIRO Ecosystem SciencesCanberraAustralia
  3. 3.Institut Scientifique, Université Mohammed V–AgdalRabatMorocco
  4. 4.EH Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University)Yanco Agricultural InstituteYancoAustralia
  5. 5.Depto. de Biodiversidad y Biología EvolutivaMuseo Nacional de Ciencias NaturalesMadridSpain
  6. 6.AgResearch LincolnChristchurchNew Zealand

Personalised recommendations