Skip to main content
Log in

Chitinolytic enzymes from the newly isolated Aeromonas hydrophila SBK1: study of the mosquitocidal activity

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

Aeromonas hydrophila SBK1 (GenBank accession no. HM802878.1), a potent chitinolytic bacterium, was isolated from a pool of 30 chitinolytic isolates. The isolate showed higher chitinolytic activity in respect to clear zone to colony size ratio of 2.15. Maximum production of chitinolytic enzymes, viz., β-N-acetyl-glucosaminidase and chitinase (specific activity 655.3 and 71.6 U mg−1, respectively) by A. hydrophila SBK1 was observed in the synthetic media, containing (w/v)-colloidal chitin, 4.0%; peptone, 0.3%; phosphate, 0.3% (0.15% of each KH2PO4 and K2HPO4); NaCl, 0.25%; MgSO4, 0.05%; KCl, 0.05%; pH 7.0 and at 35°C after 72 h of incubation. Both carbon-to-nitrogen (C/N) and carbon-to-phosphate (C/P) ratio of 13.33 were found optimum for chitinase production. Enzyme productivity increased about twofold in optimized culture condition in respect to its un-optimized state. The crude enzyme showed optimum activity against Culex quinquefasciatus larvae in native water at pH 7.0 and 35°C (LD50 0.60 U ml−1 at 48 h). Therefore, the studied chitinases can be used as an effective mosquitocidal agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267

    CAS  Google Scholar 

  • Ahmadi KJA, Yazdi MT, Najafi MF, Shahverdi AR, Faramarzi MA, Zarrini G, Behravan J (2008) Optimization of medium and cultivation conditions for chitinase production by the newly isolated: Aeromonas sp. Biotechnology 7:266–272

    Article  Google Scholar 

  • Das PK, Amalraj D (1997) Biological control of malaria vectors. Indian J Med Res 106:174–197

    PubMed  CAS  Google Scholar 

  • Duncan DB (1955) Multiple range and multiple F tests. Biometrics 11:1–42

    Article  Google Scholar 

  • Felse PA, Panda T (2000) Production of microbial chitinases—a revisit. Bioprocess Eng 23:127–134

    Article  CAS  Google Scholar 

  • Frandberg E, Schnurer J (1994) Chitinolytic properties of Bacillus pabuli K1. J Appl Bacteriol 76:361–367

    Article  PubMed  CAS  Google Scholar 

  • Gayathri G, Balasubramanian C, Vinayaga Moorthi P, Kubendran T (2010) Larvicidal potential of Beauveria bassiana (Balsamo) Vuillemin and Paecilomyces fumosoroseus (Wize) Brown and Smith on Culex quinquefasciatus (Say). J Biopestic 3:147–151

    Google Scholar 

  • Gohel V, Singh A, Vimal M, Ashwini P, Chhatpar HS (2006) Bioprospecting and antifungal potential of chitinolytic microorganisms. Afr J Biotechnol 5:54–72

    Google Scholar 

  • Gooday GW (1990) The ecology of chitin decomposition. Adv Microb Ecol 11:378–430

    Google Scholar 

  • Guo SH, Chen JK, Lee WC (2004) Purification and characterization of extracellular chitinase from Aeromonas schubertii. Enzyme Microb Technol 35:550–556

    Article  CAS  Google Scholar 

  • Hayashi K, Sato SI, Takano R, Tsujibo H, Orikoshi H, Imada C, Okami Y, Inamori K, Hara S (1995) Identification of the positions of disulfide bonds of chitinase from a marine bacterium, Alteromonas sp. strain O-7. Biosci Biotechnol Biochem 59:1981–1982

    Article  PubMed  CAS  Google Scholar 

  • Hiraga K, Shou L, Kitazawa M, Takahashi S, Shimada M, Sato R, Oda K (1997) Isolation and characterization of chitinase from a flake-chitin degrading marine bacterium, Aeromonas hydrophila H-2330. Biosci Biotechnol Biochem 61:174–176

    Article  PubMed  CAS  Google Scholar 

  • Imoto T, Yagishita K (1971) A simple activity measurement of lysozyme. Agric Biol Chem 33:1154–1156

    Article  Google Scholar 

  • Lee KP, Kim CN, Yu JH, Oh DH (1990) The production and purification of chitinase from Aeromonas salmonicida YA7-625. Korean J Appl Microbiol Biotechnol 18:599–606

    Google Scholar 

  • Liu M, Cai QX, Liu HZ, Zhang BH, Yan JP, Yuan ZM (2002) Chitinolytic activities in Bacillus thuringiensis and their synergistic effects on larvicidal activity. J Appl Microbiol 93:374–379

    Article  PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with Folin phenol reagent. J Biol Chem 193:265–267

    PubMed  CAS  Google Scholar 

  • Mathivanan N, Kabilan V, Murugesan K (1997) Production of chitinase by Fusarium chlamydosporum, a mycoparasite to groundnut rust, Puccinia arachidis. Indian J Exp Biol 35:890–893

    CAS  Google Scholar 

  • Nicol S (1991) Life after death for empty shells. New Sci 129:46–48

    CAS  Google Scholar 

  • Ohishi K, Yamagishi M, Ohta T, Suzuki M, Izumida H, Sano H, Nishijima M, Miwa T (1996) Purification and properties of two chitinases from Vibrio alginilyticus H-8. Ferment Bioeng 6:598–600

    Article  Google Scholar 

  • Roberts WK, Selitrennikoff CP (1988) Plant and bacterial chitinases differ in antifungal activity. J Gen Microbiol 134:169–176

    CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Shanmugaiah V, Mathivanan N, Balasubramanian N, Manoharan PT (2008) Optimization of cultural conditions for production of chitinase by Bacillus laterosporous MML2270 isolated from rice rhizosphere soil. Afr J Biotechnol 7:2562–2568

    CAS  Google Scholar 

  • Shin WC, Lee DS, Kim TH, Woo JH, Lee JM, Kim JG, Hong SD (1995) Isolation and characterization of Acinetobacter sp. WC-17 producing chitinase. J Microbiol Biotechnol 5:80–86

    CAS  Google Scholar 

  • Souza RF, Soares RMA, Nascimento RP, Coelho RRR, Gomes RC (2005) Effect of different carbon sources on endochitinase production by Colletotrichum gloeosporioides. Curr Microbiol 51:16–21

    Article  PubMed  CAS  Google Scholar 

  • Suginta W, Robertson PA, Austin B, Fry SC, Fothergill-Gillmore LA (2000) Chitinases from Vibrio: activity screening and purification of chiA from Vibrio carchariae. J Appl Microbiol 89:76–84

    Article  PubMed  CAS  Google Scholar 

  • Takayanagi T, Ajisaka K, Takiguchi Y, Shimahara K (1991) Isolation and characterization of thermostable chitinases from Bacillus licheniformis X-7u. Biochim Biophy Acta 1078:404–410

    Article  CAS  Google Scholar 

  • Tsujibo H, Orikoshi H, Shiotani K, Hayashi M, Umeda J, Miyamoto K, Imada C, Okami Y, Inamori Y (1998) Characterization of chitinase C from a marine bacterium, Alteromonas sp. strain O-7, and its corresponding gene and domain structure. Appl Envion Microbiol 64:472–478

    CAS  Google Scholar 

  • Usui T, Hayashi Y, Nanjo F, Sakai K, Ishido Y (1987) Transglycosylation reaction of a chitinase purified from Nocardia orientalis. Biochim Biophys Acta 923:302–339

    Article  PubMed  CAS  Google Scholar 

  • Vaidya RJ, Shah IM, Vyas PR, Chhatpar HS (2001) Production of chitinase and its optimization from a novel isolate Alcaligenes xylosoxydans: potential in antifungal biocontrol. World J Microbiol Biotechnol 17:691–696

    Article  CAS  Google Scholar 

  • Wang SL, Chang WT (1997) Purification and characterization of two bifunctional chitinases/lysozymes extracellularly produced by Pseudomonas aeruginosa K-187 in a shrimp and crab shell powder medium. Appl Environ Microbiol 63:380–386

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by the financial support of the Major Research Project sponsored by University Grants Commission (UGC), New Delhi, India [F.NO.-33-218/2007(SR)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keshab Chandra Mondal.

Additional information

Handling Editor: Helen Roy

Rights and permissions

Reprints and permissions

About this article

Cite this article

Halder, S.K., Maity, C., Jana, A. et al. Chitinolytic enzymes from the newly isolated Aeromonas hydrophila SBK1: study of the mosquitocidal activity. BioControl 57, 441–449 (2012). https://doi.org/10.1007/s10526-011-9405-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-011-9405-3

Keywords

Navigation