, Volume 56, Issue 4, pp 395–407 | Cite as

Alien arthropod predators and parasitoids: interactions with the environment

  • Edward W. Evans
  • Richard F. Comont
  • Wolfgang Rabitsch


Many species of entomophagous arthropods have been introduced either intentionally (through the practice of biological control) or unintentionally to new regions. We examine interactions of these aliens with their new environments in the context of rapid global change linked to human activity. We consider effects of such interactions on establishment and spread of the alien species and effects on indigenous biota and ecosystems. Major elements of global change that affect alien-environment interactions include landscape modifications by humans (e.g., cultivation, habitat loss and fragmentation) and increases in atmospheric CO2 and other gases resulting in climate change and other effects (e.g., changes in food quality for herbivores that affect higher trophic levels as well). Alien arthropod predators can alter landscapes for their benefit, to the detriment of indigenous species. A brief review also of blood-feeding alien arthropods makes clear that interactions with the environment critically influence invasions of zoophagous arthropods in general.


Climate change Disturbance Fragmentation Invasive species Land use Species interactions 


  1. Abbott K (2005) Supercolonies of the invasive yellow crazy ant, Anoplolepis gracilipes, on an oceanic island: forager activity patterns, density and biomass. Insect Soc 52:266–273CrossRefGoogle Scholar
  2. Altermatt F (2010) Climatic warming increases voltinism in European butterflies and moths. Proc R Soc B 277:1281–1287PubMedCrossRefGoogle Scholar
  3. Attrill M, Thomas RM (1996) Long-term distribution patterns of mobile estuarine invertebrates (Ctenophora, Cnidaria, Crustacea: Decapoda) in relation to hydrological parameters. Mar Ecol Prog Ser 146:25–36CrossRefGoogle Scholar
  4. Aukema B, Loomans A (2005) Orius laevigatus in the Netherlands (Heteroptera, Anthocoridae). Ned Faun Meded 23:125–127Google Scholar
  5. Bianchi FJJA, Booij CJH, Tscharntke T (2006) Sustainable pest regulation in agricultural landscapes: a review on landscape composition, biodiversity, and natural pest control. Proc R Soc B 273:1715–1727PubMedPubMedCentralCrossRefGoogle Scholar
  6. Blackburn T, Jeschke JM (2009) Invasion success and threat status: two sides of a different coin? Ecography 32:83–88CrossRefGoogle Scholar
  7. Bolger DT, Suarez AV, Crooks KR, Morrison SA, Case TJ (2000) Arthropods in urban habitat fragments in southern California: area, age, and edge effects. Ecol Appl 10:1230–1248CrossRefGoogle Scholar
  8. Bolger DT, Beard KH, Suarez A, Case TJ (2008) Increased abundance of native and non-native spiders with habitat fragmentation. Divers Distrib 14:655–665CrossRefGoogle Scholar
  9. Bond W, Slingsby P (1984) Collapse of an ant–plant mutualism–the Argentine ant (Iridomyrmex humulis) and myrmecochorous Proteaceae. Ecology 65:1031–1037CrossRefGoogle Scholar
  10. Brown MW, Miller SS (1998) Coccinellidae (Coleoptera) in apple orchards of eastern West Virginia and the impact of invasion by Harmonia axyridis. Entomol News 109:136–142Google Scholar
  11. Burger JC, Patten MA, Prentice TR, Redak RA (2001) Evidence for spider community resilience to invasion by non-native spiders. Biol Conserv 98:241–249CrossRefGoogle Scholar
  12. Canfield DE, Glazer AN, Falkowski PG (2010) The evolution and future of earth’s nitrogen cycle. Science 330:192–196PubMedCrossRefGoogle Scholar
  13. Carney SE, Byerley MB, Holway DA (2003) Invasive Argentine ants (Linepithema humile) do not replace native ants as seed dispersers of Dendromecon rigida (Papaveraceae) in California, USA. Oecologia 135:576–582PubMedCrossRefGoogle Scholar
  14. Chen Y, Olson DM, Ruberson JR (2010) Effects of nitrogen fertilization on tritrophic interactions. Arthropod–Plant Interact 4:81–94CrossRefGoogle Scholar
  15. Christian CE (2001) Consequences of a biological invasion reveal the importance of mutualism for plant communities. Nature 413:635–639PubMedCrossRefGoogle Scholar
  16. Clark PF, Rainbow PS, Robbins RS, Smith B, Yeomans WE, Thomas M, Dobson G (1998) The alien Chinese mitten crab, Eriocheir sinensis (Crustacea: Decapoda: Brachyura), in the Thames catchment. J Mar Biol Assoc UK 78:1215–1221CrossRefGoogle Scholar
  17. Cornelisse TM, Hafernik JE (2009) Effects of soil characteristics and human disturbance on tiger beetle oviposition. Ecol Entomol 34:495–503CrossRefGoogle Scholar
  18. DAISIE (2009) Handbook of alien species in Europe. Springer, HeidelbergGoogle Scholar
  19. Dana ED, López-Santiago J, García-de-Lomas J, García-Ocaña DM, Gámez V, Ortega F (2010) Long-term management of the invasive Pacifastacus leniusculus (Dana, 1852) in a small mountain stream. Aquat Invasions 5:317–322CrossRefGoogle Scholar
  20. Davis MA, Grime JP, Thompson K (2000) Fluctuating resources in plant communities: a general theory of invisibility. J Ecol 88:528–534CrossRefGoogle Scholar
  21. Debinski DM, Holt RD (2000) A survey and overview of habitat fragmentation experiments. Conserv Biol 14:342–355CrossRefGoogle Scholar
  22. Dermody O, O’Neill BF, Zangerl AR, Berenbaum MR, DeLucia EH (2008) Effects of elevated CO2 and O3 on leaf damage and insect abundance in a soybean agroecosystem. Arthropod–Plant Interact 2:125–135CrossRefGoogle Scholar
  23. Dias JC, Silveira AC, Schofield CJ (2002) The impact of Chagas disease control in Latin America: a review. Mem Inst Oswaldo Cruz 97:603–612PubMedCrossRefGoogle Scholar
  24. Didham RK, Lawton JH, Hammond PM, Eggleton P (1998) Trophic structure stability and extinction dynamics of beetles (Coleoptera) in tropical forest fragments. Phil Trans R Soc B 353:437–451PubMedCentralCrossRefGoogle Scholar
  25. Didham RK, Tylianakis JM, Gemmell NJ, Rand TA, Ewers RM (2007) Interaction effects of habitat modification and species invasion on native species decline. Trends Ecol Evol 22:409–496CrossRefGoogle Scholar
  26. Dixon AFG (2000) Insect predator–prey dynamics, Ladybird beetles and biological control. Cambridge University Press, CambridgeGoogle Scholar
  27. Drake JA, Mooney HA, di Castri F, Groves RH, Kruger FJ, Rejmánek M, Williamson M (eds) (1989) Biological invasions: a global perspective. Wiley, ChichesterGoogle Scholar
  28. Duelli P, Studer M, Marchand I, Jakob S (1990) Population movements of arthropods between natural and cultivated areas. Biol Conserv 54:193–207CrossRefGoogle Scholar
  29. Dukes JS (2011) Climate change. In: Simberloff D, Rejmanek M (eds) Encyclopedia of biological invasions. University of California Press, Berkeley, pp 113–117Google Scholar
  30. Dukes JS, Mooney HA (1999) Does global change increase the success of biological invaders? Trends Ecol Evol 14:135–139PubMedCrossRefGoogle Scholar
  31. Durvasula RV, Gumbs A, Panackal A, Kruglov O, Aksoy S, Merrifield RB, Richards FF, Beard CB (1997) Prevention of insect-borne disease: an approach using transgenic symbiotic bacteria. Proc Natl Acad Sci USA 94:3274–3278PubMedPubMedCentralCrossRefGoogle Scholar
  32. ECDC (2009) Development of Aedes albopictus risk maps. ECDC Technical Report, StockholmGoogle Scholar
  33. Elliott N, Kieckhefer R, Kauffman W (1996) Effects of an invading coccinellid on native coccinellids in an agricultural landscape. Oecologia 105:537–544PubMedCrossRefGoogle Scholar
  34. Elton CS (1958) The Ecology of invasion by animals and plants. Methuen, LondonCrossRefGoogle Scholar
  35. Enserink M (2008) A mosquito goes global. Science 320:864–866PubMedCrossRefGoogle Scholar
  36. Essl F, Dullinger S, Rabitsch W, Hulme PE, Hülber K, Jarošík V, Kleinbauer I, Krausmann F, Kühn I, Nentwig W, Vilá M, Genovesi P, Gherardi F, Desprez-Loustau M-L, Roques A, Pyšek P (2011) Socioeconomic legacy yields an invasion debt. Proc Natl Acad Sci USA 108:203–207PubMedCrossRefGoogle Scholar
  37. Evans EW (2000) Morphology of invasion: body size patterns associated with establishment of Coccinella septempunctata in western North America. Eur J Entomol 97:469–474CrossRefGoogle Scholar
  38. Evans EW (2004) Habitat displacement of native North American ladybirds by an introduced species. Ecology 85:637–647CrossRefGoogle Scholar
  39. Evans EW, Soares AO, Yasuda H (2011) Invasions by ladybugs, ladybirds, and other predatory beetles. BioControl. doi:10.1007/s10526-011-9374-6
  40. Evans FC, Lanham UN (1960) Distortion of the pyramid of numbers in a grassland insect community. Science 131:1531–1532PubMedCrossRefGoogle Scholar
  41. Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81:117–142PubMedCrossRefGoogle Scholar
  42. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515CrossRefGoogle Scholar
  43. Forman RTT (1995) Land mosaics. The ecology of landscapes and regions. Cambridge University Press, CambridgeGoogle Scholar
  44. Fridley JD, Stachowicz JJ, Naeem S, Sax DF, Seabloom EW, Smith MD, Stohlgren TJ, Tilman D, Von Holle B (2007) The invasion paradox: reconciling pattern and process in species invasion. Ecology 88:3–17PubMedCrossRefGoogle Scholar
  45. Gilbey V, Attrill M, Coleman RA (2008) Juvenile Chinese mitten crabs (Eriocheir sinensis) in the Thames estuary: distribution, movement and possible interactions with the native crab Carcinus maenas. Biol Invasions 10:67–77CrossRefGoogle Scholar
  46. Glinwood R, Ahmed E, Qvarfordt E, Ninkovic V, Pettersson J (2009) Airborne interactions between undamaged plants of different cultivars affect insect herbivores and natural enemies. Arthropod–Plant Interact 3:215–224CrossRefGoogle Scholar
  47. Goddard J, deShazo R (2009) Bed bugs (Cimex lectularius) and clinical consequences of their bites. J Am Med Assoc 301:1358–1366CrossRefGoogle Scholar
  48. Green PT, Lake PS, O’Dowd DJ (1999) Monopolization of litter processing by a dominant land crab on a tropical oceanic island. Oecologia 119:435–444PubMedCrossRefGoogle Scholar
  49. Hanson SM, Craig GB Jr (1995) Relationship between cold hardiness and supercooling point in Aedes albopictus eggs. J Am Mosq Control Assoc 11:35–38PubMedGoogle Scholar
  50. Harding KC, McNamara JM, Holt RD (2006) Understanding invasions in patchy habitats through metapopulation theory. In: Cadotte MW, McMahon SM, Fukami T (eds) Conceptual ecology and invasion biology: reciprocal approaches to nature. Invading nature, vol 1. Springer series in invasion ecology, Berlin, pp 371–403Google Scholar
  51. Hart AJ, Tullett AG, Bale JS, Walters KFA (2002) Effects of temperature on the establishment potential in the UK of the non-native glasshouse biocontrol agent Macrolophus caliginosus. Physiol Entomol 27:112–123CrossRefGoogle Scholar
  52. Hatherly IS, Hart AJ, Tullett AG, Bale JS (2005) Use of thermal data as a screen for the establishment potential of non-native biological control agents in the UK. BioControl 50:687–698CrossRefGoogle Scholar
  53. Hawley WA, Reiter P, Copeland RS, Pumpuni CB, Craig GB Jr (1987) Aedes albopictus in North America: probable introduction in used tires from Northern Asia. Science 236:1114–1116PubMedCrossRefGoogle Scholar
  54. Heller NE, Sanders NJ, Shors JW, Gordon DM (2008) Rainfall facilitates the spread, and time alters the impact, of the invasive Argentine ant. Oecologia 155:385–395PubMedCrossRefGoogle Scholar
  55. Hellmann JJ, Byers JE, Bierwagen BG, Dukes JS (2008) Five potential consequences of climate change for invasive species. Conserv Biol 22:534–543PubMedCrossRefGoogle Scholar
  56. Henneman ML, Memmott J (2001) Infiltration of a Hawaiian community by introduced biological control agents. Science 293:1314–1316PubMedCrossRefGoogle Scholar
  57. Herzog DC, Reagan TE, Sheppard DC, Hyde KM, Nilakhe SS, Hussein MYB, McMahan ML, Thomas RC, Newsom LD (1976) Solenopsis invicta Buren influence on Louisiana pasture soil chemistry (Hymenoptera-Formicidae). Environ Entomol 5:160–162CrossRefGoogle Scholar
  58. Hicks BJ, Aegerter JN, Leather SR, Watt AD (2007) Asynchrony in larval development of the pine beauty moth, Panolis flammea, on an introduced host plant may affect parasitoid efficacy. Arthropod–Plant Interact 1:213–220CrossRefGoogle Scholar
  59. Hillstrom ML, Lindroth RL (2008) Elevated atmospheric carbon dioxide and ozone alter forest insect abundance and community composition. Insect Conserv Diver 1:233–241CrossRefGoogle Scholar
  60. Holt RD (1996) Adaptive evolution in source–sink environments: direct and indirect effects of density-dependence on niche evolution. Oikos 75:182–192CrossRefGoogle Scholar
  61. Holway DA (1998) Factors governing rate of invasion: a natural experiment using Argentine ants. Oecologia 115:206–212PubMedCrossRefGoogle Scholar
  62. Holway DA, Suarez AV, Case TJ (2002) Role of abiotic factors in governing susceptibility to invasion: a test with Argentine ants. Ecology 83:1610–1619CrossRefGoogle Scholar
  63. Hosokawa T, Koga R, Kikuchi Y, Meng X-Y, Fukatsu T (2010) Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc Natl Acad Sci USA 107:769–774PubMedCrossRefGoogle Scholar
  64. Human KF, Gordon DM (1996) Exploitation and interference competition between the invasive Argentine ant, Linepithema humile, and native ant species. Oecologia 105:405–412PubMedCrossRefGoogle Scholar
  65. IPCC (2007) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (AR4). Cambridge University Press, CambridgeGoogle Scholar
  66. Jeschke JM, Strayer DL (2008) Are threat status and invasion success two sides of the same coin? Ecography 31:124–130CrossRefGoogle Scholar
  67. Johnsen SI, Taugbøl T (2010) Invasive alien species fact sheet—Pacifastacus leniusculus. From: online database of the North European and Baltic Network on invasive alien species—NOBANIS. Accessed 24 Nov 2010
  68. Kajita Y, Evans EW (2010) Alfalfa fields promote high reproductive rate of an invasive predatory lady beetle. Biol Invasions 12:2293–2302CrossRefGoogle Scholar
  69. Kareiva P (1987) Habitat fragmentation and the stability of predator–prey interactions. Nature 326:388–390CrossRefGoogle Scholar
  70. Kenis M, Roques A (2010) Lice and fleas (Phthiraptera and Siphonaptera). In: Roques A, Kenis M, Lees D, Lopez-Vaamonde C, Rabitsch W, Rasplus J-Y, Roy DB (eds) Alien terrestrial arthropods of Europe. BioRisk, vol 4. Pensoft Publishers, Sofia, Bulgaria, pp 833–849Google Scholar
  71. Kindlmann P, Burel F (2008) Connectivity measures: a review. Landsc Ecol 23:879–890Google Scholar
  72. Kobelt M, Nentwig W (2008) Alien spider introductions to Europe supported by global trade. Divers Distrib 14:273–280CrossRefGoogle Scholar
  73. Kruess A, Tscharntke T (1994) Habitat fragmentation, species loss, and biological control. Science 264:1581–1584PubMedCrossRefGoogle Scholar
  74. Kumschick S, Fronzek S, Schmidt-Entling MH, Nentwig W (2011) Rapid spread of the wasp spider Argiope bruennichi across Europe: a consequence of climate change? Climatic Change (in press)Google Scholar
  75. Kuussaari M, Bommarco R, Heikkinen RK, Helm A, Krauss J, Lindborg R, Öckinger E, Pärtel M, Pino J, Rodá F, Stefanescu C, Teder T, Zobel M, Steffan-Dewenter I (2009) Extinction debt: a challenge for biodiversity conservation. Trends Ecol Evol 24:564–571PubMedCrossRefGoogle Scholar
  76. Labbé GM, Nimmo DD, Alphey L (2010) piggybac- and PhiC31-mediated genetic transformation of the Asian tiger mosquito, Aedes albopictus (Skuse). PloS Negl Trop Dis 4(8):e788PubMedPubMedCentralCrossRefGoogle Scholar
  77. Levine JM (2000) Species diversity and biological invasions: relating local process to community pattern. Science 288:852–854PubMedCrossRefGoogle Scholar
  78. Lockwood JL, McKinney ML (2001) Biotic homogenization. Kluwer, New YorkCrossRefGoogle Scholar
  79. Lonsdale WM (1999) Global patterns of plant invasions and the concept of invasibility. Ecology 80:1522–1536CrossRefGoogle Scholar
  80. Lopez-Vaamonde C, Glavendekić M, Paiva MR (2010) Invaded habitats. In: Roques A, Kenis M, Lees D, Lopez-Vaamonde C, Rabitsch W, Rasplus J-Y, Roy DB (eds) Alien terrestrial arthropods of Europe. BioRisk, vol 4. pp 45–50Google Scholar
  81. MA (Millenium Ecosystem Assessment) (2005) Ecosystems and human well-being: biodiversity synthesis. World Resources Institute, Washington DCGoogle Scholar
  82. MacArthur RH (1972) Geographical ecology. Harper & Row, New YorkGoogle Scholar
  83. Massad TJ, Dyer LA (2010) A meta-analysis of the effects of global environmental change on plant–herbivore interactions. Arthropod–Plant Interact 4:181–188CrossRefGoogle Scholar
  84. McKone MJ, McLauchlan KK, Lebrun EG, McCall AC (2001) An edge effect caused by adult corn-rootworm beetles on sunflowers in tallgrass prairie remnants. Conserv Biol 15:1315–1324CrossRefGoogle Scholar
  85. McMichael AJ (2003) Global climate change: will it affect vector-borne infectious diseases? Int Med J 33:554–555CrossRefGoogle Scholar
  86. Medley KA (2010) Niche shifts during the global invasion of the Asian tiger mosquito, Aedes albopictus Skuse (Culicidae), revealed by reciprocal distribution models. Global Ecol Biogeogr 19:122–133CrossRefGoogle Scholar
  87. Meissner K, Juntunen A, Malmqvist B, Muotka T (2009) Predator–prey interactions in a variable environment: responses of a caddis larva and its blackfly prey to variations in stream flow. Ann Zool Fennici 46:193–204CrossRefGoogle Scholar
  88. Musolin DL (2007) Insects in a warmer world; ecological, physiological and life-history responses of true bugs (Heteroptera) to climate change. Globa Chang Biol 13:1565–1585CrossRefGoogle Scholar
  89. Navajas M, Migeon A, Estrada-Peña A, Mailleux A-C, Servigne P, Petanović R (2010) Mites and ticks (Acari). In: Roques A, Kenis M, Lees D, Lopez-Vaamonde C, Rabitsch W, Rasplus J-Y, Roy DB (eds) Alien terrestrial arthropods of Europe. BioRisk, vol 4. Pensoft Publishers, Sofia, Bulgaria, pp 149–192Google Scholar
  90. Nedved O, Pekar S, Bezdecka P, Liznarova E, Rezac M, Schmitt M, Sentenska L (2011) Ecology of Arachnida alien to Europe. BioControl. doi:10.1007/s10526-011-9385-3
  91. Öckinger E, Schweiger O, Crist TO, Debinski DM, Krauss J, Kuussaari M, Petersen JD, Poyry J, Settele J, Summerville KS, Bommarco R (2010) Life-history traits predict species responses to habitat area and isolation: a cross-continental synthesis. Ecol Lett 13:969–979PubMedGoogle Scholar
  92. O’Dowd DJ, Green PT, Lake PS (2003) Invasional ‘meltdown’ on an oceanic island. Ecol Lett 6:812–817CrossRefGoogle Scholar
  93. Ott J (2010) Monitoring climate change with dragonflies. BioRisk 5:1–286CrossRefGoogle Scholar
  94. Percy KE, Awmack CS, Lindroth RL, Kubiske ME, Kopper BJ, Isebrands JG, Pregitzer KS, Hendrey GR, Dickson RE, Zak DR, Oksanen E, Sober J, Harrington R, Karnosky DF (2002) Altered performance of forest pests under atmospheres enriched by CO2 and O3. Nature 420:403–407PubMedCrossRefGoogle Scholar
  95. Pulliam HR (1988) Sources, sinks, and population regulation. Am Nat 132:652–661CrossRefGoogle Scholar
  96. Pyšek P, Jarošik V, Hulme PE, Kühn I, Wild J, Arianoutsou M, Bacher S, Chiron F, Didžiulis V, Essl F, Genovesi P, Gherardi F, Hejda M, Kark S, Lambdon PW, Desprez-Loustau M-L, Nentwig W, Pergl J, Poboljšaj K, Rabitsch W, Roques A, Roy DB, Shirley S, Solarz W, Vilá M, Winter M (2010) Disentangling the role of environmental and human pressures on biological invasions across Europe. Proc Natl Acad Sci USA 107:12157–12162PubMedPubMedCentralCrossRefGoogle Scholar
  97. Rabitsch W (2010) Pathways and vectors of alien arthropods in Europe. In: Roques A, Kenis M, Lees D, Lopez-Vaamonde C, Rabitsch W, Rasplus J-Y, Roy DB (eds) Alien terrestrial arthropods of Europe. BioRisk, vol 4. Pensoft Publishers, Sofia, Bulgaria, pp 27–43Google Scholar
  98. Rabitsch W (2011) The hitchhiker’s guide to alien ant invasions. BioControl. doi:10.1007/s10526-011-9370-x
  99. Rand TA, Louda SM (2006) Spillover of agriculturally subsidized predators as a potential threat to native insect herbivores in fragmented landscapes. Conserv Biol 20:1720–1729PubMedCrossRefGoogle Scholar
  100. Rand TA, Tylianakis JM, Tscharntke T (2006) Spillover edge effects: the dispersal of agriculturally subsidized insect natural enemies into adjacent natural habitats. Ecol Lett 9:603–614PubMedCrossRefGoogle Scholar
  101. Reinhardt K, Siva-Jothy MT (2007) Biology of the bed bugs (Cimicidae). Annu Rev Entomol 52:351–374PubMedCrossRefGoogle Scholar
  102. Roura-Pascual N, Hui C, Ikeda T, Leday G, Richardson DM, Carpintero S, Espadaler X, Gómez C, Guénard B, Hartley S, Krushelnycky P, Lester PJ, McGeoch MA, Menke SB, Pedersen JS, Pitt JPW, Reyes J, Sanders NJ, Suarez AV, Touyama Y, Ward D, Ward PS, Worner SP (2011) Relative roles of climatic suitability and anthropogenic influence in determining the pattern of spread in a global invader. Proc Natl Acad Sci USA 108:220–225PubMedCrossRefGoogle Scholar
  103. Roy H, Roy DB, Roques A (2011) Inventory of alien arthropod predators and parasitoids established in Europe. BioControl. doi:10.1007/s10526-011-9355-9
  104. Ryall KL, Fahrig L (2006) Response of predators to loss and fragmentation of prey habitat: a review of theory. Ecology 87:1086–1093PubMedCrossRefGoogle Scholar
  105. Sala OE, Chapin FS, Armesto JJ, Berlow E, Bloomfield J, Dirzo R, Huber-Sanwald E, Huenneke LF, Jackson RB, Kinzig A, Leemans R, Lodge DM, Mooney HA, Oesterheld M, Poff NL, Sykes MT, Walker BH, Walker M, Wall DH (2000) Global biodiversity scenarios for the year 2100. Nature 287:1770–1774Google Scholar
  106. Schmunis GA, Yadon ZE (2010) Chagas disease: a Latin American health problem becoming a world health problem. Acta Trop 115:14–21PubMedCrossRefGoogle Scholar
  107. Schweiger O, Biesmeijer JC, Bommarco R, Hickler T, Hulme PE, Klotz S, Kühn I, Moora M, Nielsen A, Ohlemüller R, Petanidou T, Potts SG, Pyšek P, Stout JC, Sykes MT, Tscheulin T, Vilá M, Walther GR, Westphal C, Winter M, Zobel M, Settele J (2010) Multiple stressors on biotic interactions: how climate change and alien species interact to affect pollination. Biol Rev 85:777–795PubMedGoogle Scholar
  108. Shea K, Chesson PL (2002) Community ecology theory as a framework for biological invasions. Trends Ecol Evol 17:170–176CrossRefGoogle Scholar
  109. Sheppard SK, Henneman ML, Memmott J, Symondson WOC (2004) Infiltration by alien predators into invertebrate food webs in Hawaii: a molecular approach. Mol Ecol 13:2077–2088PubMedCrossRefGoogle Scholar
  110. Simberloff D, Von Holle B (1999) Positive interactions of nonindigenous species: invasional meltdown? Biol Invasions 1:21–32CrossRefGoogle Scholar
  111. Stohlgren TJ, Binkley D, Chong GW, Kalkhan MA, Schell LD, Bull KA, Otsuki Y, Newman G, Bashkin M, Son Y (1999) Exotic plant species invade hot spots of native plant diversity. Ecol Monogr 69:25–46CrossRefGoogle Scholar
  112. Suarez AV, Case TJ (2003) The ecological consequences of a fragmentation mediated invasion: the Argentine ant, Linepithema humile, in southern California. Ecol Stud 162:161–180CrossRefGoogle Scholar
  113. Suarez AV, Bolger DT, Case TJ (1998) Effects of fragmentation and invasion on native ant communities in coastal southern California. Ecology 79:2041–2056CrossRefGoogle Scholar
  114. Swift TL, Hannon SJ (2010) Critical thresholds associated with habitat loss: a review of the concepts, evidence and applications. Biol Rev 85:35–53PubMedCrossRefGoogle Scholar
  115. Thuiller W, Richardson DM, Midgley GF (2007) Will climate change promote alien invasions? In: Nentwig W (ed) Biological invasions. Springer, Berlin, pp 197–211CrossRefGoogle Scholar
  116. Tscharntke T, Bommarco R, Clough Y, Crist TO, Kleijn D, Rand TA, Tylianakis JM, van Nouhuys S, Vidal S (2007) Conservation biological control and enemy diversity on a landscape scale. Biol Control 43:294–309CrossRefGoogle Scholar
  117. Turnock WJ, Wise IL, Matheson FO (2003) Abundance of some native coccinellines (Coleoptera: Coccinellidae) before and after the appearance of Coccinella septempunctata. Can Entomol 135:391–404CrossRefGoogle Scholar
  118. van Nouhuys S (2005) Effects of habitat fragmentation at different trophic levels in insect communities. Ann Zool Fennici 42:433–447Google Scholar
  119. Walther GR, Roques A, Hulme PE, Sykes MT, Pyšek P, Kühn I, Zobel M, Bacher S, Botta-Dukát Z, Bugmann H, Czúcz B, Dauber J, Hickler T, Jarošík V, Kenis M, Klotz S, Minchin D, Moora M, Nentwig W, Ott J, Panov VE, Reineking B, Robinet C, Semenchenko V, Solarz W, Thuiller W, Vilá M, Vohland K, Settele J (2009) Alien species in a warmer world: risks and opportunities. Trends Ecol Evol 24:686–693PubMedCrossRefGoogle Scholar
  120. Wilcove DS, Rothstein D, Dubow J, Phillips A, Losos E (1998) Quantifying threats to imperiled species in the United States. BioScience 48:607–615CrossRefGoogle Scholar
  121. Williamson M (1996) Biological invasions. Chapman & Hall, LondonGoogle Scholar
  122. With KA (2002) The landscape ecology of invasive spread. Conserv Biol 16:1192–1203CrossRefGoogle Scholar
  123. With KA (2004) Assessing the risk of invasive spread in fragmented landscapes. Risk Anal 24:803–815PubMedCrossRefGoogle Scholar
  124. Zettler JA, Spira TP, Allen CR (2001) Ant-seed mutualisms: Can red imported fire ants sour the relationship? Biol Conserv 101:249–253CrossRefGoogle Scholar

Copyright information

© International Organization for Biological Control (IOBC) 2011

Authors and Affiliations

  • Edward W. Evans
    • 1
  • Richard F. Comont
    • 2
  • Wolfgang Rabitsch
    • 3
  1. 1.Department of BiologyUtah State UniversityLoganUSA
  2. 2.Centre for Ecology and Hydrology-WallingfordGiffordUK
  3. 3.Environment Agency AustriaWienAustria

Personalised recommendations