, Volume 56, Issue 6, pp 883–891 | Cite as

The combined use of Bacillus thuringiensis and Nesidiocoris tenuis against the tomato borer Tuta absoluta

  • Oscar Mollá
  • Joel González-Cabrera
  • Alberto UrbanejaEmail author


Since Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae) was first detected at the end of 2006 in the Mediterranean Basin, several endemic natural enemies have been reported to prey on this exotic pest. The predator Nesidiocoris tenuis Reuter (Hemiptera: Miridae) can regulate T. absoluta populations, because it is able to prey efficiently on T. absoluta eggs. Furthermore, previous studies have demonstrated that first-instar larvae of T. absoluta are highly susceptible to Bacillus thuringiensis (Bt) treatments. In this work, we tested the combination of both approaches under greenhouse conditions. B. thuringiensis formulations were sprayed weekly for two months, three months or throughout the growing cycle, and in all cases, one N. tenuis per plant was also released. Control plants were completely destroyed by the infestation levels reached by T. absoluta. In contrast, all treatments based on B. thuringiensis treatments and releases of N. tenuis reduced leaf damage by more than 97% when compared to the untreated control, with no significant differences among them. Furthermore, yield in the control plants was significantly reduced when compared with all Bt–N. tenuis treatments. Our results demonstrate that when B. thuringiensis treatments are applied immediately after the initial detection of T. absoluta on plants, they do not interfere with N. tenuis establishment in the crop because T. absoluta eggs are available. According to our data, treatments with B. thuringiensis later in the growing season would no longer be necessary because mirids alone would control the pest.


Invasive species Endemic natural enemies Conservation biological control Miridae IPM 



The authors thank Philip A. Stansly (SFREC, University of Florida/IFAS USA) for reviewing the manuscript, Helga Montón and Jesús Estellés (IVIA) for technical assistance with experiments and maintenance of insect colonies and Emilio Carbonell (IVIA, Spain) for statistical advice. This work was partially funded by the Instituto Nacional de Investigación y Tecnología Agraria (INIA-CC09-048) and the Conselleria d’Agricultura, Pesca i Alimentació de la Generalitat Valenciana. O.M. was recipient of a PhD grant from the INIA.


  1. Acheampong S, Stark JD (2004) Effects of the agricultural adjuvant Sylgard 309 and the insecticide pymetrozine on demographic parameters of the aphid parasitoid, Diaeretiella rapae. Biol Control 31:133–137CrossRefGoogle Scholar
  2. Apablaza J (1992) La polilla del tomate y su manejo. Tattersal 79:12–13Google Scholar
  3. Arnó J, Mussoll A, Gabarra R, Sorribas R, Prat M, Garreta A, Gómez A, Matas M, Pozo C, Rodríguez D (2009a) Tuta absoluta una nueva plaga en los cultivos de tomate. Estrategias de manejo. Phytoma España 211:16–22Google Scholar
  4. Arnó J, Sorribas R, Prat M, Matas M, Pozo C, Rodríguez D, Garreta A, Gómez A, Gabarra R (2009b) Tuta absoluta, a new pest in IPM tomatoes in the northeast of Spain. IOBC WPRS Bull 49:203–208Google Scholar
  5. Arnó J, Castañe C, Riudavets J, Gabarra R (2010) Risk of damage to tomato crops by the generalist zoophytophagous predator Nesidiocoris tenuis (Reuter) (Hemiptera: Miridae). Bull Entomol Res 100:105–115PubMedCrossRefGoogle Scholar
  6. Avilla C, Vargas-Osuna E, González-Cabrera J, Ferré J, González-Zamora JE (2005) Toxicity of several δ-endotoxins of Bacillus thuringiensis against Helicoverpa armigera (Lepidoptera: Noctuidae) from Spain. J Invertebr Pathol 90:51–54PubMedCrossRefGoogle Scholar
  7. Barrientos ZR, Apablaza HJ, Norero SA, Estay PP (1998) Temperatura base y constante térmica de desarrollo de la polilla del tomate, Tuta absoluta (Lepidoptera: Gelechiidae). Ciencia e Investigación Agraria 25:133–137Google Scholar
  8. Bayer CropScience (2010) Selectividad de los productos Bayer CropScience sobre los principales organismos de control biológico en cultivos hortícolas. Accessed 3 Mar 2011
  9. Bielza P (2010) La resistencia a insecticidas en Tuta absoluta. Phytoma España 217:103–106Google Scholar
  10. Bielza P, Fernandez E, Gravalos C, Izquierdo J (2009) Testing for non-target effects of spiromesifen on Eretmocerus mundus and Orius laevigatus under greenhouse conditions. BioControl 54:229–236CrossRefGoogle Scholar
  11. Calvo J, Bolckmans K, Stansly PA, Urbaneja A (2009) Predation by Nesidiocoris tenuis on Bemisia tabaci and injury to tomato. BioControl 54:237–246CrossRefGoogle Scholar
  12. Calvo J, Belda JE, Giménez A (2010) Una nueva estrategia para el control biológico de mosca blanca y Tuta absoluta en tomate. Phytoma España 216:46–52Google Scholar
  13. Croft BA (1990) Arthropod biological control agents and pesticides. Wiley, New YorkGoogle Scholar
  14. Desneux N, Denoyelle R, Kaiser L (2006) A multi-step bioassay to assess the effect of the deltamethrin on the parasitic wasp Aphidius ervi. Chemosphere 65:1697–1706PubMedCrossRefGoogle Scholar
  15. Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106PubMedCrossRefGoogle Scholar
  16. Desneux N, Wajnberg E, Wyckhuys K, Burgio G, Arpaia S, Narváez-Vasquez C, González-Cabrera J, Catalán-Ruescas D, Tabone E, Frandon J, Pizzol J, Poncet C, Cabello T, Urbaneja A (2010) Biological invasion of European tomato crops by Tuta absoluta: ecology, geographic expansion and prospects for biological control. J Pest Sci 3:197–215CrossRefGoogle Scholar
  17. Devonshire AL, Field LM (1991) Gene amplification and insecticide resistance. Annu Rev Entomol 36:1–23PubMedCrossRefGoogle Scholar
  18. Elbert A, Brück E, Melgarejo J, Schnorbach H-J, Sone S (2005) Field development of Oberon® for whitefly and mite control in vegetables, cotton, corn, strawberries, ornamentals and tea. Pflanzenschutz-Nachrichten Bayer 58:441–468Google Scholar
  19. Entwistle PF, Cory JS, Bailey MJ, Higgs S (1993) Bacillus thuringiensis, an environmental biopesticide: theory and practice. Wiley, New YorkGoogle Scholar
  20. EPPO (2006) European and Mediterranean Plant Protection Organization. Data sheets on quarantine pests. Tuta absoluta. Accessed 3 Mar 2011
  21. EPPO (2010) European and Mediterranean Plant Protection Organization. Archives of the EPPO Reporting Service. 11 Feb 2010Google Scholar
  22. Estay P (2000) Polilla del Tomate Tuta absoluta (Meyrick). Impresos CGS Ltda. Available via DIALOG. Accessed 21 Aug 2007
  23. Ferré J, Van Rie J (2002) Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annu Rev Entomol 47:501–533PubMedCrossRefGoogle Scholar
  24. Gabarra R, Arnó J (2010) Resultados de las experiencias de control biológico de la polilla del tomate en cultivo de invernadero y aire libre en Cataluña. Phytoma España 217:65–68Google Scholar
  25. Gassmann AJ, Carriere Y, Tabashnik BE (2009) Fitness costs of insect resistance to Bacillus thuringiensis. Annu Rev Entomol 54:147–163PubMedCrossRefGoogle Scholar
  26. Giustolin TA, Vendramim JD, Alves SB, Vieira SA, Pereira RM (2001) Susceptibility of Tuta absoluta (Meyrick) (Lep, Gelechiidae) reared on two species of Lycopersicon to Bacillus thuringiensis var. kurstaki. J Appl Entomol 125:551–556CrossRefGoogle Scholar
  27. González-Cabrera J, Mollá O, Montón H, Urbaneja A (2011) Efficacy of Bacillus thuringiensis (Berliner) for controlling the tomato borer, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). BioControl 56:71–80CrossRefGoogle Scholar
  28. IPSC-WHO (2000) Bacillus thuringiensis. Environmental health criteria of the International Programme on Chemical Safety, No 217. IPCS WHO International Programme on Chemical SafetyGoogle Scholar
  29. Lietti MMM, Botto E, Alzogaray RA (2005) Insecticide resistance in Argentine populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Neotrop Entomol 34:113–119CrossRefGoogle Scholar
  30. López E (1991) Polilla del tomate: Problema crítico para la rentabilidad del cultivo de verano. Empresa y Avance Agrícola 1:6–7Google Scholar
  31. McClintock JT, Schaffer CR, Sjoblad RD (1995) A comparative review of the mammalian effect of Bacillus thuringiensis-based pesticides. J Pest Sci 45:95–105CrossRefGoogle Scholar
  32. Mollá O, Montón H, Vanaclocha P, Beitia F, Urbaneja A (2009) Predation by the mirids Nesidiocoris tenuis and Macrolophus pygmaeus on the tomato borer Tuta absoluta. IOBC/WPRS Bull 49:209–214Google Scholar
  33. Mollá O, Alonso M, Montón H, Beitia F, Verdú MJ, González-Cabrera J, Urbaneja A (2010) Control Biológico de Tuta absoluta. Catalogación de enemigos naturales y potencial de los míridos depredadores como agentes de control. Phytoma España 217:42–46Google Scholar
  34. Nicolaus B, Romijn C, Bowers L (2005) Ecotoxicological profile of the insecticide Oberon®. Pflanzenschutz-Nachrichten Bayer 58:353–370Google Scholar
  35. Niedmann LL, Meza-Basso L (2006) Evaluación de cepas nativas de Bacillus thuringiensis como una alternativa de manejo integrado de la polilla del tomate (Tuta absoluta Meyrick; Lepidoptera: Gelechiidae) en Chile. Agricultura Técnica 66:235–246Google Scholar
  36. Purcell MF, Schroeder WJ (1996) Effect of Silwet L-77 and diazinon on three tephritid fruit flies (Diptera: Tephritidae) and associated endoparasitoids. J Econ Entomol 89:1566–1570Google Scholar
  37. Sanchez JA (2009) Density thresholds for Nesidiocoris tenuis (Heteroptera: Miridae) in tomato crops. Biol Control 51:493–498CrossRefGoogle Scholar
  38. Sánchez JA (2008) Zoophytophagy in the plant bug Nesidiocoris tenuis. Agric For Entomol 10:75–80CrossRefGoogle Scholar
  39. Sanchez JA, Lacasa A (2008) Impact of the zoophytophagous plant bug Nesidiocoris tenuis (Heteroptera: Miridae) on tomato yield. J Econ Entomol 101:1864–1870PubMedCrossRefGoogle Scholar
  40. Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775–806PubMedGoogle Scholar
  41. Siqueira HAA, Guedes RNC, Picanco MC (2000) Cartap resistance and synergism in populations of Tuta absoluta (Lep., Gelechiidae). J Appl Entomol 124:233–238CrossRefGoogle Scholar
  42. Siqueira HAA, Guedes RNC, Fragoso DB, Magalhaes LC (2001) Abamectin resistance and synergism in Brazilian populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Int J Pest Manag 47:247–251CrossRefGoogle Scholar
  43. Theoduloz C, Vega A, Salazar M, González E, Meza-Basso L (2003) Expression of a Bacillus thuringiensis δ-endotoxin cry1Ab gene in Bacillus subtilis and Bacillus licheniformis strains that naturally colonize the phylloplane of tomato plants (Lycopersicon esculentum, Mills). J Appl Microbiol 94:375–381PubMedCrossRefGoogle Scholar
  44. Urbaneja A, Vercher R, Navarro V, García Marí F, Porcuna JL (2007) La polilla del tomate, Tuta absoluta. Phytoma España 194:16–23Google Scholar
  45. Urbaneja A, Montón H, Mollá O (2009) Suitability of the tomato borer Tuta absoluta as prey for Macrolophus caliginosus and Nesidiocoris tenuis. J Appl Entomol 133:292–296CrossRefGoogle Scholar
  46. van der Blom J, Robledo A, Torres S, Sánchez JA (2009) Consequences of the wide scale implementation of biological control in greenhouse horticulture in Almeria, Spain. IOBC/WPRS Bull 49:9–13Google Scholar

Copyright information

© International Organization for Biological Control (IOBC) 2011

Authors and Affiliations

  • Oscar Mollá
    • 1
  • Joel González-Cabrera
    • 1
  • Alberto Urbaneja
    • 1
    Email author
  1. 1.Unidad de Entomología UJI-IVIA-CIB CSIC, Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA)MoncadaSpain

Personalised recommendations