Skip to main content
Log in

Molecular characterization of Psyttalia lounsburyi, a candidate biocontrol agent of the olive fruit fly, and its Wolbachia symbionts as a pre-requisite for future intraspecific hybridization

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

Numerous arthropod species are genetically differentiated across their distribution area. Diversifying the geographical origins of a biocontrol agent species can be used to favour their perennial establishment by the sampling of pre-adapted genotypes and/or the production of new genotypes through hybridization. Hybridization can be nevertheless challenged by reproductive isolations induced by some common microbial endosymbionts. In this study, we aimed at characterizing (i) the genetic diversity of six populations of Psyttalia lounsburyi (Hymenoptera: Braconidae), a candidate biocontrol agent of the olive fruit fly Bactrocera oleae (Diptera: Tephritidae) and (ii) the diversity of their Wolbachia endosymbionts. Both mitochondrial and microsatellite markers evidence clustering between the South African population and several Kenyan/Namibian populations. The survey of the Wolbachia also distinguished two main variants with a spatial heterogeneity in the infection status. All these results are discussed in the context of the use of these P. lounsburyi populations for hybridization and further field releases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Baldo L, Hotopp JCD, Jolley KA, Bordenstein SR, Biber SA, Choudhury RR, Hayashi C, Maiden MCJ, Tettelin H, Werren JH (2006) Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Appl Environ Microb 72:7098–7110

    Article  CAS  Google Scholar 

  • Bellows TS (2001) Restoring population balance through natural enemy introductions. Biol Control 21:199–205

    Article  Google Scholar 

  • Besnard G, de Casas RR, Vargas P (2007) Plastid and nuclear DNA polymorphism reveals historical processes of isolation and reticulation in the olive tree complex (Olea europaea). J Biogeogr 34:736–752

    Article  Google Scholar 

  • Billah MK, Kimani-Njogu SW, Wharton RA, Overholt WA, Wilson DD, Cobblah MA (2008) Cross mating studies among five fruit fly parasitoid populations: potential biological control implications for tephritid pests. Biol Control 53:709–724

    Google Scholar 

  • Bon MC, Jones W, Hurard C, Loiseau A, Ris N, Pickett C, Estoup A, Fauvergue X (2008) Identification of 21 polymorphic microsatellites in the African parasitoid wasp, Psyttalia lounsburyi (Silvestri) (Hymenoptera : Braconidae). Mol Ecol Resour 8:930–932

    Article  CAS  PubMed  Google Scholar 

  • Carletto J, Lombaert E, Chavigny P, Brevault T, Lapchin L, Vanlerberghe-Masutti F (2009) Ecological specialization of the aphid Aphis gossypii Glover on cultivated host plants. Mol Ecol 18:2198–2212

    Article  CAS  PubMed  Google Scholar 

  • Cheres MT, Miller JF, Crane JR, Knapp SJ (2000) Genetic distance as a predictor of heterosis and hybrid performance within and between heterotic groups in sunflower. Theor Appl Genet 100:889–894

    Article  Google Scholar 

  • Ciosi M, Miller NJ, Kim KS, Giordano R, Estoup A, Guillemaud T (2008) Invasion of Europe by the western corn rootworm, Diabrotica virgifera virgifera: multiple transatlantic introductions with various reductions of genetic diversity. Mol Ecol 17:3614–3627

    Article  CAS  PubMed  Google Scholar 

  • Copeland RS, White IM, Okumu I, Machera P, Wharton RA (2004) Insects associated with fruits of Oleaceae (Asteridae, Lamiales) in Kenya, with special references to Tephritidae (Diptera). Bishop Mus Bull Entomol 12:135–164

    Google Scholar 

  • Daane KM, Johnson MW (2010) Olive fruit fly: managing an ancient pest in modern times. Annu Rev Entomol 55:151–169

    Article  CAS  PubMed  Google Scholar 

  • Daane KM, Sime KR, Wang X, Nadei H, Johnson MW, Walton MW, Kirk A, Pickett CH (2008) Psyttalia lounsburyi (Hymenoptera: Braconidae), potential biological control agent for the olive fruit fly in California. Biol Control 44:78–89

    Article  Google Scholar 

  • De Barro PJ (2005) Genetic structure of the whitefly Bemisia tabaci in the Asia-Pacific region revealed using microsatellite markers. Mol Ecol 14:3695–3718

    Article  PubMed  Google Scholar 

  • Dedeine F, Vavre F, Fleury F, Loppin B, Hochberg ME, Boulétreau M (2001) Removing symbiotic Wolbachia bacteria specifically inhibits oogenesis in a parasitic wasp. Proc Natl Acad Sci USA 98:6247–6252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denoth M, Frid L, Myers JH (2002) Multiple agents in biological control: improving the odds? Biol Control 24:20–30

    Article  Google Scholar 

  • Dlugosch KM, Parker IM (2008) Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Mol Ecol 17:431–449

    Article  CAS  PubMed  Google Scholar 

  • Eilenberg J, Hajek A, Lomer C (2001) Suggestions for unifying the terminology in biological control. Biol Control 46:387–400

    Google Scholar 

  • Ellstrand NC, Schierenbeck KA (2006) Hybridization as a stimulus for the evolution of invasiveness in plants? Euphytica 148:35–46

    Article  Google Scholar 

  • Engelstädter J, Hurst GDD (2009) The ecology and evolution of microbes that manipulate host reproduction. Annu Rev Ecol Evol Syst 40:127–149

    Article  Google Scholar 

  • Engelstadter J, Telschow A (2009) Cytoplasmic incompatibility and host population structure. Heredity 103:196–207

    Article  CAS  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Facon B, Jarne P, Pointier JP, David P (2005) Hybridization and invasiveness in the freshwater snail Melanoides tuberculata: hybrid vigour is more important than increase in genetic variance. J Evol Biol 18:524–535

    Article  CAS  PubMed  Google Scholar 

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome C oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299

    CAS  PubMed  Google Scholar 

  • Franck P, Reyes M, Olivares J, Sauphanor B (2007) Genetic architecture in codling moth populations: comparisons between microsatellite and insecticide markers. Mol Ecol 16:3554–3564

    Article  CAS  PubMed  Google Scholar 

  • GarciaRamos G, Kirkpatrick M (1997) Genetic models of adaptation and gene flow in peripheral populations. Evolution 51:21–28

    Article  Google Scholar 

  • Gariepy TD, Kuhlmann U, Gillott C, Erlandson M (2007) Parasitoids, predators and PCR: the use of diagnostic molecular markers in biological control of Arthropods. J Appl Entomol 131:225–240

    Article  CAS  Google Scholar 

  • Goodacre SL, Martin OL, Thomas GCF, Hewitt GM (2006) Wolbachia and other endosymbiont infection in spiders. Mol Ecol 15:517–527

    Article  CAS  PubMed  Google Scholar 

  • Goudet J (1995) Fstat version 1.2: a computer program to calculate F statistics. J Hered 86:485–486

    Article  Google Scholar 

  • Harrison S, Hastings A (1996) Genetic and evolutionary consequences of metapopulation structure. Trends Ecol Evol 11:180–183

    Article  CAS  PubMed  Google Scholar 

  • Hilgenboeker K, Hammerstain P, Schlattmann P, Telschow A, Werren JH (2008) How many species are infected with Wolbachia? A statistical analysis on current data. FEMS Microbiol Lett 281:215–220

    Article  Google Scholar 

  • Hopper KR, Roush RT, Powell W (1993) Management of genetics of biological-control introductions. Annu Rev Entomol 38:27–51

    Article  Google Scholar 

  • Huey RB, Gilchrist GW, Carlson ML, Berrigan D, Serra L (2000) Rapid evolution of a geographic cline in size in an introduced fly. Science 287:308–309

    Article  CAS  PubMed  Google Scholar 

  • Hufbauer RA, Roderick GK (2005) Microevolution in biological control: Mechanisms, patterns, and processes. Biol Control 35:227–239

    Article  Google Scholar 

  • Kikuchi Y, Fukatsu T (2003) Diversity of Wolbachia endosymbionts in heteropteran bugs. Appl Environ Microbiol 69:6082–6090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kittayapong P, Baisley KJ, Baimai V, O’Neill SL (2000) Distribution and diversity of Wolbachia infections in southeast Asian mosquitoes (Diptera: Culicidae). J Med Entomol 37:340–345

    Article  CAS  PubMed  Google Scholar 

  • Kolbe JJ, Glor RE, Schettino LRG, Lara AC, Larson A, Losos JB (2004) Genetic variation increases during biological invasion by a Cuban lizard. Nature 431:177–181

    Article  CAS  PubMed  Google Scholar 

  • Kounatidis I, Crotti E, Sapountzis P, Sacchi L, Rizzi A, Chouaia B, Bandi C, Alma A, Daffonchio D, Mavragani-Tsipidou P, Bourtzis K (2009) Acetobacter tropicalis is a major symbiont of the olive fruit fly (Bactrocera oleae). Appl Environ Microbiol 75:3281–3288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kraaijeveld AR, Godfray HCJ (1999) Geographic patterns in the evolution of resistance and virulence in Drosophila and its parasitoids. Am Nat 153:S61–S74

    Article  Google Scholar 

  • Lavergne S, Molofsky J (2007) Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proc Natl Acad Sci USA 104:3883–3888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenormand T (2002) Gene flow and the limits to natural selection. Trends Ecol Evol 17:183–189

    Article  Google Scholar 

  • Lenormand T, Bourguet D, Guillemaud T, Raymond M (1999) Tracking the evolution of insecticide resistance in the mosquito Culex pipiens. Nature 400:861–864

    Article  CAS  PubMed  Google Scholar 

  • Malausa JC, Blanchet A, Bon MC, Cheyppe-Buchmann S, Groussier-Bout G, Jones W, Pickett C, Ris N, Roche M, Thaon M, Fauvergue X (2010) Introduction of the African parasitoid Psyttalia lounsburyi in south of France for the classical biological control of Bactrocera oleae: will hybridization affect establishment and population growth? IOBC/WPRS Bull 59:163–170

    Google Scholar 

  • Mkize N, Hoelmer KA, Villet MH (2008) A survey of fruit-feeding insects and their parasitoids occurring on wild olives, Olea europaea ssp cuspidata, in the Eastern Cape of South Africa. Biocontrol Sci Technol 18:991–1004

    Article  Google Scholar 

  • Montiel Bueno A, Jones O (2002) Alternative methods for controlling the olive fly, Bactrocera oleae, involving semiochemicals. IOBC/WPRS Bull 25:1–11

    Google Scholar 

  • Moran NA, McCutcheon JP, Nakabachi A (2008) Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet 42:165–190

    Article  CAS  PubMed  Google Scholar 

  • Nardi F, Carapelli A, Dallai R, Roderick GK, Frati F (2005) Population structure and colonization history of the olive fly, Bactrocera oleae (Diptera, Tephritidae). Mol Ecol 14:2729–2738

    Article  CAS  PubMed  Google Scholar 

  • Parry D, Goyer RA, Lenhard GJ (2001) Macrogeographic clines in fecundity, reproductive allocation, and offspring size of the forest tent caterpillar Malacosoma disstria. Ecol Entomol 26:281–291

    Article  Google Scholar 

  • Peterson MA, Denno RF (1998) The influence of dispersal and diet breadth on patterns of genetic isolation by distance in phytophagous insects. Am Nat 152:428–446

    Article  CAS  PubMed  Google Scholar 

  • Piry S, Alapetite A, Cornuet JM, Paetkau D, Baudouin L, Estoup A (2004) GENECLASS2: a software for genetic assignment and first-generation migrant detection. J Hered 95:536–539

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raymond M, Rousset F (1995) Genepop (version-1.2)—population-genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Article  Google Scholar 

  • Reznick DN, Ghalambor CK (2001) The population ecology of contemporary adaptations: what empirical studies reveal about the conditions that promote adaptive evolution. Genetica 112:183–198

    Article  PubMed  Google Scholar 

  • Roderick GK (2004) Tracing the origin of pests and natural enemies: genetic and statistical approaches. In: Ehler LE, Sforza R, Mateille T (eds) Genetics, evolution and biological control. CAB International, Wallingford, pp 97–112

    Chapter  Google Scholar 

  • Roderick GK, Navajas M (2003) Genes in new environments: Genetics and evolution in biological control. Nat Rev Genet 4:889–899

    Article  CAS  PubMed  Google Scholar 

  • Rugman-Jones PF, Wharton R, van Noort T, Stouthamer R (2009) Molecular differentiation of the Psyttalia concolor (Szepligeti) species complex (Hymenoptera: Braconidae) associated with olive fly, Bactrocera oleae (Rossi) (Diptera: Tephritidae), in Africa. Biol Control 49:17–26

    Article  CAS  Google Scholar 

  • Schierenbeck KA, Aïnouche ML (2006) The role of evolutionary genetics in studies of plant invasions. In: Cadotte MW, McMahon SM, Fukami T (eds) Conceptual ecology and invasion biology. Springer, Dordrecht, pp 193–221

    Google Scholar 

  • Sime KR, Daane KM, Messing RH, Johnson MW (2006) Comparison of two laboratory cultures of Psyttalia concolor (Hymenoptera : Braconidae), as a parasitoid of the olive fruit fly. Biol Control 39:248–255

    Article  Google Scholar 

  • Sime KR, Daane KM, Kirk A, Andrews JW, Johnson MW, Messing RH (2007) Psyttalia ponerophaga (Hymenoptera : Braconidae) as a potential biological control agent of olive fruit fly Bactrocera oleae (Diptera: Tephritidae) in California. B Entomol Res 97:233–242

    Article  CAS  Google Scholar 

  • Sime KR, Daane KM, Wang XG, Johnson MW, Messing RH (2008) Evaluation of Fopius arisanus as a biological control agent for the olive fruit fly in California. Agr Forest Entomol 10:423–431

    Article  Google Scholar 

  • Skouras PJ, Margaritopoulos JT, Seraphides NA, Ioannides IM, Kakani EG, Mathiopoulos KD, Tsitsipis JA (2007) Organophosphate resistance in olive fruit fly, Bactrocera oleae, populations in Greece and Cyprus. Pest Manag Sci 63:42–48

    Article  CAS  PubMed  Google Scholar 

  • Stouthamer R, Breeuwer JAJ, Hurst GDD (1999) Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annu Rev Microbiol 53:71–102

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Teklewod A, Becker HC (2006) Comparison of phenotypic and molecular distances to predict heterosis and F1 performance in Ethiopian mustard (Brassica carinata A. Braun). Theor Appl Genet 112:752–759

    Article  Google Scholar 

  • Telfer MG, Hassall M (1999) Ecotypic differentiation in the grasshopper Chorthippus brunneus: life history varies in relation to climate. Oecologia 121:245–254

    Article  PubMed  Google Scholar 

  • Vavre F, Fleury F, Lepetit D, Fouillet P, Boulétreau M (1999) Phylogenetic evidence for horizontal transmission of Wolbachia in host-parasitoid associations. Mol Biol Evol 16:1711–1723

    Article  CAS  PubMed  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population-structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Werren JH (1997) Biology of Wolbachia. Annu Rev Entomol 42:587–609

    Article  CAS  PubMed  Google Scholar 

  • Werren JH, Windsor D, Guo L (1995) Distribution of Wolbachia among neotropical arthropods. Proc Roy Soc B 262:197–204

    Article  Google Scholar 

  • Zchori-Fein E, Perlman SJ (2004) Distribution of the bacterial symbiont Cardinium in arthropods. Mol Ecol 13:2009–2016

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Rousset F, O’Neill SL (1998) Phylogeny and PCR-based classification of Wolbachia strains using wsp gene sequences. Proc Roy Soc B 265:509–515

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Ris.

Additional information

Handling Editor: Dirk Babendreier

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheyppe-Buchmann, S., Bon, MC., Warot, S. et al. Molecular characterization of Psyttalia lounsburyi, a candidate biocontrol agent of the olive fruit fly, and its Wolbachia symbionts as a pre-requisite for future intraspecific hybridization. BioControl 56, 713–724 (2011). https://doi.org/10.1007/s10526-011-9346-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-011-9346-x

Keywords