Skip to main content

Advertisement

Log in

The effects of a plant defence priming compound, β-aminobutyric acid, on multitrophic interactions with an insect herbivore and a hymenopterous parasitoid

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

Biocontrol of aphids by natural enemies is utilized in many organic and integrated pest management schemes. β-aminobutyric acid (BABA), a non-protein amino acid, is a plant defence primer that suppresses growth of some insect herbivores when applied as a root drench. This investigation examined how applying BABA to host plants via the roots may impact on a parasitoid wasp of aphids. Female Aphidius ervi (Haliday) did not discriminate against pea aphids (Acyrthosiphon pisum (Harris)) reared on BABA-treated beans (Vicia faba L.) or show any modified responses to volatiles released from BABA-treated plants. BABA reduced the size of emerging wasps, primarily by inhibiting the growth of the host aphid. Metabolomic analysis revealed BABA in both aphids and emergent wasps indicating some potential for direct physiological inhibition to have occurred. Survival of the parasitoids was only reduced at doses of BABA likely to produce phytotoxic effects in many plant species, thus there may be potential to incorporate plant defence primers like BABA into integrated pest management practices. However, the precise mechanisms of BABA-inhibition of insects still require elucidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahuja I, Rohloff J, Bones AM (2010) Defence mechanisms of Brassicaceae: implications for plant-insect interactions and potential for integrated pest management. Agron Sustain Dev 30:311–348

    Article  Google Scholar 

  • Baker JM, Hawkins ND, Ward JL, Lovegrove A, Napier JA, Shewry PR, Beale MH (2006) A metabolomic study of substantial equivalence of field-grown genetically modified wheat. Plant Biotechnol J 4:381–392

    Article  CAS  PubMed  Google Scholar 

  • Birkett MA, Campbell CAM, Chamberlain K, Guerrieri E, Hick AJ, Martin JL, Matthes M, Napier JA, Pettersson J, Pickett JA, Poppy GM, Pow EM, Pye BJ, Smart LE, Wadhams GH, Wadhams LJ, Woodcock CM (2000) New roles for cis-jasmone as an insect semiochemical and in plant defense. Proc Natl Acad Sci 97:9329–9334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruce TJA, Martin JL, Pickett JA, Pye BJ, Smart LE, Wadhams LJ (2003) Cis-jasmone treatment induces resistance in wheat plants against the grain aphid, Sitobion avenae (Fabricius) (Homoptera: Aphididae). Pest Manag Sci 59:1031–1036

    Article  CAS  PubMed  Google Scholar 

  • Bruce TJA, Matthes MC, Chamberlain K, Woodcock CM, Mohib A, Webster B, Smart LE, Birkett MA, Pickett JA, Napier JA (2008) Cis-jasmone induces Arabidopsis genes that affect the chemical ecology of multitrophic interactions with aphids and their parasitoids. Proc Natl Acad Sci 105:4553–4558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruinsma M, Posthumus MA, Mumm R, Mueller MJ, van Loon JJA, Dicke M (2009) Jasmonic acid-induced volatiles of Brassica oleracea attract parasitoids: effects of time and dose, and comparison with induction by herbivores. J Exp Bot 60:2575–2587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caccia S, Leonardi MG, Casartelli M, Grimaldi A, de Eguileor M, Pennacchio F, Giordani B (2005) Nutrient absorption by Aphidius ervi larvae. J Insect Phys 51:1183–1192

    Article  CAS  Google Scholar 

  • Cai QN, Ma XM, Zhao X, Cao YZ, Yang XQ (2009) Effects of host plant resistance on insect pests and its parasitoid: a case of study of wheat-aphid-parasitoid system. Biol Control 49:134–138

    Article  Google Scholar 

  • Cohen Y, Gisi U (1994) Systemic translocation of 14C-DL-β-aminobutyric acid in tomato plants in relation to induced resistance against Phytophthora infestans. Phys Mol Plant Pathol 45:441–456

    Article  CAS  Google Scholar 

  • Cohen Y, Niderman T, Mosinger E, Fluhr R (1994) β-aminobutyric acid induces the accumulation of pathogenesis-related proteins in tomato (Lycopersicon esculentum L.) plants and resistance to late blight infection caused by Phytophthora infestans. Plant Physiol 104:59–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen Y, Rubin AE, Kilfin G (2010) Mechanisms of induced resistance in lettuce against Bremia lactucae by DL-beta-amino-butyric acid (BABA). Eur J Plant Pathol 126:553–573

    Article  CAS  Google Scholar 

  • Conrath U (2009) Priming of induced plant defence responses. Adv Bot Res 51:361–395

    Article  CAS  Google Scholar 

  • Conrath U, Thulke O, Katz V, Schwindling S, Kohler A (2001) Priming as a mechanism in induced systemic resistance of plants. Eur J Plant Pathol 107:113–119

    Article  CAS  Google Scholar 

  • Dewar AM (2007) Chemical control. In: van Emden HF, Harrington R (eds) Aphids as crop pests. CABI, Wallingford, pp 391–422

    Chapter  Google Scholar 

  • Dicke M, Baldwin IT (2010) The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help’. Trends Plant Sci 15:167–175

    Article  CAS  PubMed  Google Scholar 

  • Fiedler AK, Landis DA, Wratten SD (2008) Maximizing ecosystem services from conservation biological control: the role of habitat management. Biol Control 45:254–271

    Article  Google Scholar 

  • Fischer MJC, Farine S, Chong J, Guerlain P, Bertsch C (2009) The direct toxicity of BABA against grapevine ecosystem organisms. Crop Prot 28:710–712

    Article  CAS  Google Scholar 

  • Gols R, Witjes LMA, van Loon JJA, Posthumus MA, Dicke M, Harvey JA (2008) The effect of direct and indirect defenses in two wild brassicaceous plant species on a specialist herbivore and its gregarious endoparasitoid. Entomol Exp Appl 128:99–108

    Article  CAS  Google Scholar 

  • Guerrieri E, Pennacchio F, Tremblay E (1993) Flight behaviour of the aphid parasitoid Aphidius ervi (Hymenoptera, Braconidae) in response to plant and host volatiles. Eur J Entomol 90:415–421

    Google Scholar 

  • Guerrieri E, Pennacchio F, Tremblay E (1997) Effect of adult experience on in-flight orientation to plant and plant–host complex volatiles in Aphidius ervi Haliday (Hymenoptera, Braconidae). Biol Control 10:159–165

    Article  Google Scholar 

  • Hammerschmidt R (2007) Introductions: definitions and some history. In: Walters D, Newton A, Lyon G (eds) Induced resistance for plant defence. Blackwell, Oxford, pp 1–8

    Chapter  Google Scholar 

  • Heil M, Baldwin IT (2002) Fitness costs of induced resistance: emerging experimental support for a slippery concept. Trends Plant Sci 7:61–67

    Article  CAS  PubMed  Google Scholar 

  • Heil M, Hilpert A, Kaiser W, Linsenmair KE (2000) Reduced growth and seed set following chemical induction of pathogen defence: does systemic acquired resistance (SAR) incur allocation costs? J Ecol 88:645–654

    Article  CAS  Google Scholar 

  • Hodge S, Powell G (2011) Factors influencing the inhibition of aphids by β-aminobutyric acid. Bulletin IOBC/WPRS (in press)

  • Hodge S, Thompson GA, Powell G (2005) Application of DL-β-aminobutyric acid (BABA) as a root drench to legumes inhibits the growth and reproduction of the pea aphid Acyrthosiphon pisum Harris. Bull Entomol Res 95:449–455

    Article  CAS  PubMed  Google Scholar 

  • Hodge S, Pope TW, Holaschke M, Powell G (2006) The effect of β-aminobutyric acid on the growth of herbivorous insects feeding on Brassicaceae. Ann Appl Biol 148:223–229

    Article  CAS  Google Scholar 

  • Hodge S, Powell G, Andrews M (2011) The effects of β-aminobutyric acid on seed germination, growth and chemical composition of crop plants. Bulletin IOBC/WPRS (in press)

  • Jakab G, Cottier V, Touquin V, Rigoli G, Zimmerli L, Metraux JP, Mauch-Mani B (2001) Beta-aminobutyric acid-induced resistance in plants. Eur J Plant Pathol 107:29–37

    Article  CAS  Google Scholar 

  • Jansen JJ, Allwood JW, Marsden-Edwards E, van der Puten WH, Goodacre R, van Dam NM (2008) Metabolomic analysis of the interaction between plants and herbivores. Metabolomics 5:150–161

    Article  Google Scholar 

  • Jonsson M, Wratten SD, Landis DA, Gurr GM (2008) Recent advances in conservation biocontrol of arthropods by arthropods. Biol Control 45:172–175

    Article  Google Scholar 

  • Karatolos N, Hatcher PE (2009) The effect of acetylsalicylic acid and oxalic acid on Myzus persicae and Aphidius colemani. Entomol Exp Appl 130:98–105

    Article  CAS  Google Scholar 

  • Karban R, Baldwin IT (1997) Induced responses to herbivory. University of Chicago Press, London, p 319

    Book  Google Scholar 

  • Kift NB, Mead A, Reynolds K, Sime S, Barber MD, Denholm I, Tatchell GM (2004) The impact of insecticide resistance in the currant-lettuce aphid, Nasonovia ribisnigri, on pest management in lettuce. Agric For Entomol 6:295–309

    Article  Google Scholar 

  • Knutson AE, Rojas EA, Marshal D, Gilstrap FE (2002) Interaction of parasitoids and resistant cultivars of wheat on Hessian fly, Mayetiola destructor Say (Cecidomyiidae). Southwest Entomol 27:1–10

    Google Scholar 

  • Kone D, Csinos AS, Jackson KL, Ji R (2009) Evaluation of systemic acquired resistance inducers for control of Phytophthora capsici on squash. Crop Prot 28:533–538

    Article  CAS  Google Scholar 

  • Kuo H-F (1986) Resistance of oats to cereal aphids: effects on parasitism by Aphelinus asychus (Walker). In: Boethal DJ, Eikenbary RD (eds) Interactions of plant resistance and parasitoids and predators of insects. Ellis Horwood Ltd., Chichester, pp 125–137

    Google Scholar 

  • Lou YG, Du MH, Turlings TCJ, Cheng JA, Shan WF (2005) Exogenous application of jasmonic acid induces volatile emissions in rice and enhances parasitism of Nilaparvata lugens eggs by the parasitoid Anagrus nilaparvatae. J Chem Ecol 31:1985–2002

    Article  CAS  PubMed  Google Scholar 

  • Lyon G (2007) Agents that can elicit induced resistance. In: Walters D, Newton A, Lyon G (eds) Induced resistance for plant defence. Blackwell, Oxford, pp 9–29

    Chapter  Google Scholar 

  • Michaud MR, Denlinger DL (2007) Shifts in the carbohydrate, polyol, and amino acid pools during rapid cold-hardening and diapause-associated cold-hardening in flesh flies (Sarcophaga crassipalpis): a metabolomic comparison. J Comp Physiol B 177:753–763

    Article  CAS  PubMed  Google Scholar 

  • Michaud MR, Benoit JB, Lopez-Martinez G, Elnitsky MA, Lee RE Jr, Denlinger DL (2008) Metabolomics reveals unique and shared metabolic changes in response to heat shock, freezing and desiccation in the Antarctic midge, Belgica antarctica. J Insect Physiol 54:645–655

    Article  Google Scholar 

  • Mitchell C, Johnson SN, Gordon SC, Birch NA, Hubbard SF (2010) Combining plant resistance and a natural enemy to control Amphorophora idaei. BioControl 55:321–327

    Article  Google Scholar 

  • Moraes MCB, Laumann RA, Pareja M, Seron FTPS, Michereff MFF, Birkett MA, Pickett JA, Borges M (2009) Attraction of the stink bug egg parasitoid Telenomus podisi to defence signals from soybean activated treatment with cis-jasmone. Entomol Exp Appl 131:178–188

    Article  CAS  Google Scholar 

  • Ode PJ (2006) Plant chemistry and natural enemy fitness: Effects on herbivore and natural enemy interactions. Annu Rev Entomol 51:163–185

    Article  CAS  PubMed  Google Scholar 

  • Oka Y, Cohen Y, Spiegel Y (1999) Local and systemic induced resistance to the root-knot nematode in tomato by DL-beta-amino-n-butyric acid. Phytopathology 89:1138–1143

    Article  CAS  PubMed  Google Scholar 

  • Parker WE, Howard JJ, Foster SP, Denholm I (2006) The effect of insecticide application sequences on the control and insecticide resistance status of the peach-potato aphid, Myzus persicae (Hemiptera: Aphididiae), on field crops of potato. Pest Manag Sci 62:307–315

    Article  CAS  PubMed  Google Scholar 

  • Pope TW, Kissen R, Grant M, Pickett JA, Rossiter JT, Powell G (2008) Comparative innate responses of the aphid parasitoid Diaeretiella rapae to alkenyl glucosinolate derived isothiocyanates, nitriles, and epithionitriles. J Chem Ecol 34:1302–1310

    Article  CAS  PubMed  Google Scholar 

  • Powell W, Pell JK (2007) Biological control. In: van Emden HF, Harrington R (eds) Aphids as crop pests. CABI, Wallingford, pp 469–513

    Chapter  Google Scholar 

  • Rodriguez LC, Fuentes-Contreras E, Niemeyer HM (2002) Effect of innate preferences, conditioning and adult experience on the attraction of Aphidius ervi (Hymenoptera : Braconidae) toward plant volatiles. Eur J Entomol 99:285–288

    Article  Google Scholar 

  • Sarfraz M, Dosdall LM, Keddie BA (2009a) Fitness of the parasitoid Diadegma insulare is affected by its host’s food plants. Basic Appl Ecol 10:563–572

    Article  Google Scholar 

  • Sarfraz M, Dosdall LM, Keddie BA (2009b) Host plant quality affects the performance of the parasitoid Diadegma insulare. Biol Control 51:34–41

    Article  CAS  Google Scholar 

  • Sequeira R, Mackauer M (1992) Nutritional ecology of an insect host-parasitoid association: the pea aphid-Aphidius ervi system. Ecology 73:183–189

    Article  Google Scholar 

  • Stark JD, Vargas R, Banks JE (2007) Incorporating ecologically relevant measures of pesticide effect for estimating the compatibility of pesticides and biocontrol agents. J Econ Entomol 100:1027–1032

    Article  PubMed  Google Scholar 

  • Suma P, Zappala L, Mazzeo G, Siscaro G (2009) Lethal and sub-lethal effects of insecticides on natural enemies of scale insects. BioControl 54:651–661

    Article  CAS  Google Scholar 

  • Takemoto H, Powell W, Pickett J, Kainoh Y, Takabayashi J (2009) Learning is involved in the response of parasitic wasps Aphidius ervi (Haliday) (Hymenoptera: Braconidae) to volatiles from a broad bean plant, Vicia faba (Fabaceae), infested by aphids Acyrthosiphon pisum (Harris) (Homoptera: Aphididae). Appl Entomol Zool 44:23–28

    Article  Google Scholar 

  • Tang SY, Tang GY, Cheke RA (2010) Optimum timing for integrated pest management: modelling rates of pesticide application and enemy release. J Theor Biol 262:623–638

    Article  Google Scholar 

  • Thaler JS, Stout MJ, Karban R, Duffey SS (1996) Exogenous jasmonates simulate wounding in tomato plants (Lycopersicon esculentum) in the laboratory and field. J Chem Ecol 22:1767–1781

    Article  CAS  PubMed  Google Scholar 

  • Ton J, Jakab G, Toquin V, Flors V, Lavicoli A, Maeder MN, Metraux J-P, Mauch-Mani B (2005) Dissecting the β-aminobutyric acid-induced priming phenomenon in Arabidopsis. Plant Cell 17:987–999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Hulten M, Pelser M, van Loon LC, Pieterse CMJ, Ton J (2006) Costs and benefits of priming for defense in Arabidopsis. Proc Natl Acad Sci 103:5602–5607

    Article  PubMed  PubMed Central  Google Scholar 

  • Ward JL, Harris C, Lewis J, Beale MH (2003) Assessment of H-1 NMR spectroscopy and multivariate analysis as a technique for metabolite fingerprinting of Arabidopsis thaliana. Phytochemistry 62:949–957

    Article  CAS  PubMed  Google Scholar 

  • Wu CC, Singh P, Chen MC, Zimmerli L (2010) l-glutamine inhibits beta-aminobutyric acid-induced stress resistance and priming in Arabidopsis. J Exp Bot 61:995–1002

    Article  CAS  PubMed  Google Scholar 

  • Zimmerli L, Jakab G, Metraux J-P, Mauch-Mani B (2000) Potentiation of pathogen-specific defense mechanisms in Arabidopsis by β-aminobutyric acid. Proc Natl Acad Sci 97:12920–12925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was funded via a grant from the UK Biotechnology and Biological Sciences Research Council (BBSRC) and [1H]-NMR profiling was carried out by the BBSRC-funded (MET20482) MeT-RO metabolomics centre, at Rothamsted Research who also receive grant-aided support from BBSRC. We acknowledge the assistance of Dr. John Baker in collecting the NMR data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Hodge.

Additional information

Handling Editor: Stefano Colazza

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hodge, S., Ward, J.L., Galster, A.M. et al. The effects of a plant defence priming compound, β-aminobutyric acid, on multitrophic interactions with an insect herbivore and a hymenopterous parasitoid. BioControl 56, 699–711 (2011). https://doi.org/10.1007/s10526-011-9344-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-011-9344-z

Keywords

Navigation