, Volume 56, Issue 1, pp 71–80 | Cite as

Efficacy of Bacillus thuringiensis (Berliner) in controlling the tomato borer, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae)

  • Joel González-CabreraEmail author
  • Oscar Mollá
  • Helga Montón
  • Alberto Urbaneja


The tomato borer, Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae), is considered to be one of the most devastating pests affecting tomato crops in South America, where crop losses range from 60 to 100%. After its detection in the Spanish tomato-growing area at the end of 2006, it spread quickly to other European and northern African countries. Currently, T. absoluta management in these countries is mainly based on chemical treatments. Nonetheless, special emphasis is being placed on implementing environmentally safe strategies. Commercial formulates based on Bacillus thuringiensis may be a good alternative, as they have been used to control other insect pests successfully. The laboratory, greenhouse, and open-field experiments presented in this work are evidence that B. thuringiensis is highly efficient in controlling T. absoluta. First instar larvae were the most susceptible, while susceptibility was lower in second and third instar larvae. Our results have shown that the impact of T. absoluta can be greatly reduced by spraying only B. thuringiensis-based formulates, with no need for chemical insecticides. Furthermore, the integration of this technology with other biological control methods focused on T. absoluta eggs, such as the use of mirid predators or parasitoids, could reduce the number of B. thuringiensis treatments and the use of chemicals, with the consequent reduction of residues on fruits.


Biological control Bioinsecticides Entomopathogens Miridae 


MIU g−1

Millions of International Units per gram

MIU l−1

Millions of International Units per liter


Wettable granule


Wettable powder



Thanks are due to Jesús Estellés (IVIA, Spain), María del Carmen Rubio, and Ángel del Pino (Anecoop S. Coop.) for their technical assistance during the experiments and to Anecoop S. Coop. for the greenhouse use. This research was partially funded by the Conselleria d’Agricultura, Pesca i Alimentació de la Generalitat Valenciana and by the Instituto Nacional de Investigación y Tecnología Agraria (INIA-CC09-048).


  1. Ali A, Young SY (1996) Activity of Bacillus thuringiensis Berliner against different ages and stages of Helicoverpa zea (Lepidoptera: Noctuidae) on cotton. J Entomol Sci 31:1–8Google Scholar
  2. Apablaza J (1992) La polilla del tomate y su manejo. Tattersal 79:12–13Google Scholar
  3. Arnó J, Mussoll A, Gabarra i Ambert R, Sorribas R, Prat M, Garreta A, Gómez A, Matas M, Pozo C, Rodríguez D (2009a) Tuta absoluta una nueva plaga en los cultivos de tomate. Estrategias para su manejo. Phytoma España 211:16–22Google Scholar
  4. Arnó J, Sorribas R, Prat M, Matas M, Pozo C, Rodríguez D, Garreta A, Gómez A, Gabarra R (2009b) Tuta absoluta, a new pest in IPM tomatoes in the northeast of Spain. IOBC WPRS Bull 49:203–208Google Scholar
  5. Barrientos ZR, Apablaza HJ, Norero SA, Estay PP (1998) Temperatura base y constante térmica de desarrollo de la polilla del tomate, Tuta absoluta (Lepidoptera: Gelechiidae). Ciencia e Investigación Agraria 25:133–137Google Scholar
  6. Beegle CC (1990) Bioassay methods for quantification of Bacillus thuringiensis δ-endotoxin. In: Hickle LA, Fitch WL (eds) Analytical chemistry of Bacillus thuringiensis. ACS Symposium Series 432, vol 1. ACS, Washington, DC, pp 14–21Google Scholar
  7. Cabello T, Gallego JR, Fernández-Maldonado FJ, Soler A, Beltrán D, Parra A, Vila E (2009a) The damsel bug Nabis pseudoferus (Hem.: Nabidae) as a new biological control agent of the South American tomato pinkworm, Tuta absoluta (Lep.: Gelechiidae), in tomato crops of Spain. IOBC WPRS Bull 49:219–223Google Scholar
  8. Cabello T, Gallego JR, Vila E, Soler A, del Pino M, Carnero A, Hernández-Suárez E, Polaszek A (2009b) Biological control of the South American tomato pinworm, Tuta absoluta (Lep.: Gelechiidae), with releases of Trichogramma achaeae (Hym.: Trichogrammatidae) in tomato greenhouses of Spain. IOBC WPRS Bull 49:225–230Google Scholar
  9. Charles JF, Delécluse A, Nielsen-LeRoux C (2000) Entomopathogenic bacteria: from laboratory to field application. Kluwer Academic Publishers, Dordrecht, The NetherlandsGoogle Scholar
  10. Damgaard PH (2000) Natural occurrence and dispersal of Bacillus thuringiensis in the environment. In: Charles JF, Delécluse A, Nielsen-LeRoux C (eds) Entomopathogenic bacteria: from laboratory to field application. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 23–40Google Scholar
  11. Desneux N, Decourtye A, Delpuech JM (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106CrossRefPubMedGoogle Scholar
  12. Desneux N, Wajnberg E, Wyckhuys KAG, Burgio G, Arpaia S, Narváez-Vásquez CA, González-Cabrera J, Ruescas DC, Tabone E, Frandon J, Pizzol J, Poncet C, Cabello T, Urbaneja A (2010) Biological invasion of European tomato crops by Tuta absoluta: ecology, history of invasion and prospects for biological control. J Pest Sci 83:197–215CrossRefGoogle Scholar
  13. Devonshire AL, Field LM (1991) Gene amplification and insecticide resistance. Annu Rev Entomol 36:1–23CrossRefPubMedGoogle Scholar
  14. Entwistle PF, Cory JS, Bailey MJ, Higgs S (1993) Bacillus thuringiensis, an environmental biopesticide: theory and practice. Wiley, New YorkGoogle Scholar
  15. Estay P (2000) Polilla del Tomate Tuta absoluta (Meyrick). Impresos CGS Ltda. Available online at: Accessed 21 August 2007
  16. European and Mediterranean Plant Protection Organization (EPPO) (2006) Data sheets on quarantine pests. Tuta absoluta. Available online at: Accessed 11 August 2010
  17. European and Mediterranean Plant Protection Organization (EPPO) (2010) Archives of the EPPO Reporting Service. Available online at: Accessed 11 February 2010
  18. Ferré J, Van Rie J, MacIntosh SC (2008) GM crops and insect resistance management (IRM). In: Romeis J, Shelton AM, Kennedy GG (eds) Integration of insect-resistant GM crops within IPM Programs, vol 1, pp 41–85Google Scholar
  19. Gilliland A, Chambers CE, Bone EJ, Ellar DJ (2002) Role of Bacillus thuringiensis Cry1 δ-endotoxin binding in determining potency during lepidopteran larval development. Appl Environ Microbiol 68:1509–1515CrossRefPubMedGoogle Scholar
  20. Giustolin TA, Vendramim JD, Alves SB, Vieira SA, Pereira RM (2001) Susceptibility of Tuta absoluta (Meyrick) (Lep., Gelechiidae) reared on two species of Lycopersicon to Bacillus thuringiensis var. kurstaki. J Appl Entomol 125:551–556CrossRefGoogle Scholar
  21. Huang Z, Guan C, Guan X (2004) Cloning, characterization and expression of a new cry1Ab gene from Bacillus thuringiensis WB9. Biotechnol Lett 26:1557–1561CrossRefPubMedGoogle Scholar
  22. International Programme on Chemical Safety (IPCS-WHO) (2000) Microbial Pest Control Agent Bacillus thuringiensis. Environmental Health Criteria 217. Available online at:
  23. Lacey LA, Shapiro-Ilan DI (2008) Microbial control of insect pests in temperate orchard systems: potential for incorporation into IPM. Annu Rev Entomol 53:121–144CrossRefPubMedGoogle Scholar
  24. Landgren O, Kyle RA, Hoppin JA, Beane Freeman LE, Cerhan JR, Katzmann JA, Rajkumar SV, Alavanja MC (2009) Pesticide exposure and risk of monoclonal gammopathy of undetermined significance in the Agricultural Health Study. Blood 113:6386–6391CrossRefPubMedGoogle Scholar
  25. Lietti MMM, Botto E, Alzogaray RA (2005) Insecticide resistance in Argentine populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Neotrop Entomol 34:113–119CrossRefGoogle Scholar
  26. López E (1991) Polilla del tomate: Problema crítico para la rentabilidad del cultivo de verano. Empresa y Avance Agrícola 1:6–7Google Scholar
  27. McClintock JT, Schaffer CR, Sjoblad RD (1995) A comparative review of the mammalian toxicity of Bacillus thuringiensis-based pesticides. Pest Sci 45:95–105CrossRefGoogle Scholar
  28. Mollá O, Montón H, Vanaclocha P, Beitia F, Urbaneja A (2009) Predation by the mirids Nesidiocoris tenuis and Macrolophus pygmaeus on the tomato borer Tuta absoluta. IOBC WPRS Bull 49:209–214Google Scholar
  29. Monserrat A (2009) La polilla del tomate Tuta absoluta en la Región de Murcia: bases para su control. Serie Técnica y de Estudios No. 34. Conserjería de Agricultura y AguaGoogle Scholar
  30. Niedmann LL, Meza-Basso L (2006) Evaluación de cepas nativas de Bacillus thuringiensis como una alternativa de manejo integrado de la polilla del tomate (Tuta absoluta Meyrick; Lepidoptera: Gelechiidae) en Chile. Agric Téc 66:235–246Google Scholar
  31. Rausell C, Martínez-Ramírez AC, García-Robles I, Real MD (2000) A binding site for Bacillus thuringiensis Cry1Ab toxin is lost during larval development in two forest pests. Appl Environ Microbiol 66:1553–1558CrossRefPubMedGoogle Scholar
  32. Roh JY, Choi JY, Li MS, Jin BR, Je YH (2007) Bacillus thuringiensis as a specific, safe, and effective tool for insect pest control. J Microbiol Biotechnol 17:547–559PubMedGoogle Scholar
  33. Siqueira HAA, Guedes RNC, Picanço MC (2000) Cartap resistance and synergism in populations of Tuta absoluta (Lep., Gelechiidae). J Appl Entomol 124:233–238CrossRefGoogle Scholar
  34. Siqueira HAA, Guedes RNC, Fragoso DB, Magalhaes LC (2001) Abamectin resistance and synergism in Brazilian populations of Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Int J Pest Manag 47:247–251CrossRefGoogle Scholar
  35. Sjoblad RD, McClintock JT, Engler R (1992) Toxicological considerations for protein components of biological pesticide products. Regul Toxicol Pharmacol 15:3–9CrossRefPubMedGoogle Scholar
  36. Theoduloz C, Vega A, Salazar M, González E, Meza-Basso L (2003) Expression of a Bacillus thuringiensis δ-endotoxin cry1Ab gene in Bacillus subtilis and Bacillus licheniformis strains that naturally colonize the phylloplane of tomato plants (Lycopersicon esculentum, Mills). J Appl Microbiol 94:375–381CrossRefPubMedGoogle Scholar
  37. Urbaneja A, Montón H, Vanaclocha P, Mollá O, Beitia F (2008a) La polilla del tomate, Tuta absoluta, una nueva presa para los míridos Nesidiocoris tenuis y Macrolophus pygmaeus. Agricola Vergel 320:361–367Google Scholar
  38. Urbaneja A, Vercher R, Navarro V, García Marí F, Porcuna JL (2008b) La polilla del tomate, Tuta absoluta. Phytoma España 194:16–23Google Scholar
  39. Urbaneja A, Montón H, Mollá O (2009) Suitability of the tomato borer Tuta absoluta as prey for Macrolophus pygmaeus and Nesidiocoris tenuis. J Appl Entomol 133:292–296CrossRefGoogle Scholar
  40. Weisenburger DD (1993) Human health effects of agrichemical use. Hum Pathol 24:571–576CrossRefPubMedGoogle Scholar

Copyright information

© International Organization for Biological Control (IOBC) 2010

Authors and Affiliations

  • Joel González-Cabrera
    • 1
    Email author
  • Oscar Mollá
    • 1
  • Helga Montón
    • 1
  • Alberto Urbaneja
    • 1
  1. 1.Unidad Asociada de Entomología IVIA (Instituto Valenciano de Investigaciones Agrarias), UJI (Universitat Jaume I), CIB (Centro de Investigaciones Biológicas) del Consejo Superior de Investigaciones Científicas (CSIC), Centro de Protección Vegetal y BiotecnologíaMoncadaSpain

Personalised recommendations