Skip to main content

Advertisement

Log in

Ecological considerations in producing and formulating fungal entomopathogens for use in insect biocontrol

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

Insect pests persist in a wide-variety of agricultural, arboreal and urban environments. Effective control with fungal entomopathogens using inundation biocontrol requires an understanding of the ecology of the target insect, fungal pathogen, and the insect-pathogen interaction. Historically, the development of production and formulation processes for biocontrol fungi has primarily focused on reducing costs by maximizing the yield of infective propagules, increasing storage stability, and improving product form for ease of application. These goals are critical for commercialization but are often in conflict with environmental and ecological considerations. Critical parameters for selecting a fungal pathogen for use in inundation biocontrol include the cost-effective production of a stable, infective propagule that is suited for use in the environment where the insect must be controlled. Production processes can be manipulated nutritionally and environmentally to produce efficacious propagules or to direct fungal differentiation to propagule forms that may be better suited for use in specific environments. Formulation development must also consider ecological and environmental factors to maximize biocontrol efficacy. A basic understanding of the surface chemistries of the fungal propagule and insect, the interactions between a fungal propagule and the insect cuticle that lead to infection, and the impact of the environment on this interaction can aid in the development of effective formulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akbar W, Lord JC, Nechols JR, Loughin TM (2005) Efficacy of Beauveria bassiana for red flour beetle when applied with plant essential oils or in mineral oil and organosilicone carriers. J Econ Entomol 98:683–688

    PubMed  Google Scholar 

  • Alves RT, Bateman RP, Gunn J, Prior C, Leather SR (2002) Effects of different formulations on viability and medium-term storage of Metarhizium anisopliae conidia. Neotrop Entomol 31:91–99

    Google Scholar 

  • Anonymous (2009) Fire triangle. Wikipedia. Downloaded from http://en.wikipedia.org/wiki/Fire_triangle

  • Askary H, Benhamou N, Brodeur J (1999) Ultrastructural and cytochemical characterization of aphid invasion by the hyphomycete Verticillium lecanii. J Invertebr Pathol 74:1–13

    CAS  PubMed  Google Scholar 

  • Avery PB, Hunter WB, Hall DG, Jackson MA, Rogers ME, Powell CA (2008) Novel delivery of the fungi Paecilomyces fumosoroseus (Deuteromycotina: Hyphomycetes) for managing the Asian citrus psyllid (Psyllidae: Hemiptera). In: The 41st annual meeting of the society for invertebrate pathology. Coventry, United Kingdom, p 65

  • Ayala-Zermeno MA, Navarro-Barranco H, Mier T, Toriello C (1999) Effect of agro-chemicals on in vitro growth of the entomopathogenic fungi Metarhizium anisopliae (Metschnikoff) Sorokin and Paecilomyces fumosoroseus (Wize) Brown and Smith. Rev Latinoam de Microbiol 41:223–229

    Google Scholar 

  • Bartlett MC, Jaronski ST (1988) Mass production of entomogenous fungi for biological control of insects. In: Burge MN (ed) Fungi in biological control systems. Manchester University Press, Manchester, pp 61–85

    Google Scholar 

  • Baur ME, Kaya HK, Gaugler R, Tabashnik B (1997) Effects of adjuvants on entomopathogenic nematode persistence and efficacy against Plutella xylostella. Biocontrol Sci Technol 7:513–525

    Google Scholar 

  • Baverstock J, Roy H, Pell J (2009) Entomopathogenic fungi and insect behaviour: from unsuspecting hosts to targeted vectors. BioControl. doi:10.1007/s10526-009-9238-5 (this SI)

  • Behle RW, Garcia-Guitierrez C, Tamez-Guerra P, McGuire MR, Jackson MA (2006) Pathogenicity of blastospores and conidia of Paecilomyces fumosoroseus against larvae of the Mexican bean beetle, Epilachna varivestis Mulsant. Southwestern Entomol 31:289–295

    Google Scholar 

  • Bidochka MJ, Leger RJ, Joshi L, Roberts DW (1995) The rodlet layer from aerial and submerged conidia of the entomopathogenic fungus Beauveria bassiana contains hydrophobin. Mycol Res 99:403–406

    CAS  Google Scholar 

  • Bidochka MJ, Kamp AM, Lavender M, Dekoning J, Amritha de Croos JN (2001) Habit association in two genetic groups of the insect-pathogenic fungus Metarhizium anisopliae: uncovering cryptic species. Appl Environ Microbiol 67:1335–1342

    CAS  PubMed  Google Scholar 

  • Bomar CR, Lockwood JA (1994a) Olfactory basis of cannibalism in grasshoppers (Orthoptera: Acrididae): I. Laboratory assessment of attractants. J Chem Ecol 20:2249–2260

    Google Scholar 

  • Bomar CR, Lockwood JA (1994b) Olfactory basis of cannibalism in grasshoppers (Orthoptera: Acrididae): II. Field assessment of attractants. J Chem Ecol 20:2263–2271

    Google Scholar 

  • Bora RS, Murty MG, Shenbagarathai R, Sekar V (1994) Introduction of a lepidopteran-specific insecticidal crystal protein gene of Bacillus thuringiensis subsp. kurstaki by conjugal transfer into a Bacillus megaterium strain that persists in the cotton phyllosphere. Appl Environ Microbiol 60:214–222

    CAS  PubMed  Google Scholar 

  • Boucias DG, Pendland JC (1991) Attachment of mycopathogens to cuticle: the initial event of mycosis in arthropod hosts. In: Cole GT, Hoch HC (eds) The fungal spore and disease initiation in plants and animals. Plenum, New York, pp 101–127

    Google Scholar 

  • Boyette CD, Abbas HK (1994) Host range alteration of the bioherbicidal fungus Alternaria crassa with fruit pectin and plant filtrates. Weed Sci 42:487–491

    Google Scholar 

  • Bruck DJ (2005) Ecology of Metarhizium anisopliae in soil-less potting media and the rhizosphere implications for pest management. Biol Control 32:155–163

    Google Scholar 

  • Bulmer MS, Bachelet I, Raman R, Rosengaus RB, Sasisekharan R (2009) Targeting an antimicrobial effector function in insect immunity as a pest control strategy. Proc Nat Acad Sci 106:12652–12657

    CAS  PubMed  Google Scholar 

  • Butler MJ, Day AW (1998) Fungal melanins: a review. Can J Microbiol 44:1115–1136

    CAS  Google Scholar 

  • Butt TM, Jackson C, Magan N (2001) Introduction—fungal biological control agents: progress, problems and potential. In: Butt TM, Jackson C, Magan N (eds) Fungi as biocontrol agents: progress, problems and potential. CAB International Publishing, Wallingford, pp 1–8

    Google Scholar 

  • Castrillo LA, Roberts DW, Vandenberg JD (2005) The fungal past, present, and future: germination, ramification, and reproduction. J Invertebr Pathol 89:46–56

    PubMed  Google Scholar 

  • Caudwell RW, Gatehouse AG (1996) Formulation of grasshopper and locust entomopathogens in baits using starch extrusion technology. Crop Prot 15:33–37

    Google Scholar 

  • Chandler D, Heal JB, Gillespie AT (1994) Effect of osmotic potential on the germination of conidia and colony growth of Verticillium lecanii. Mycol Res 98:384–388

    Google Scholar 

  • Charudattan R (2001) Biological control of weeds by means of plant pathogens: significance for integrated weed management in modern agro-ecology. BioControl 46:229–260

    Google Scholar 

  • Cohen E, Tammar J (2009) Photostabilization of Beauveria bassiana conidia using anionic dyes. Appl Clay Sci 42:569–574

    CAS  Google Scholar 

  • Coley-Smith JR, Cooke RC (1971) Survival and germination of fungal sclerotia. In: Horsfall JG, Baker KF, Zentmyer GA (eds) Annu Rev Phytopathol 9:65–92

  • Costa SD, Grassano S, Li J (2008) Sweet whey based biopesticide composition. World Patent Application #2008/73843

  • Crowe JH, Crowe LM (1986) Stabilization of membranes in anhydrobiotic organisms. In: Leopold AC (ed) Membranes, metabolism and dry organisms. Comstock Publishing Co., Ithaca, pp 188–209

    Google Scholar 

  • Daoust RA, Ward MG, Roberts DW (1983) Effect of formulation on the viability of Metarhizium anisopliae conidia. J Invertebr Pathol 41:151–160

    CAS  PubMed  Google Scholar 

  • De Jonghe K, Hermans D, Hafte M (2007) Efficacy of alcohol alkoxylate surfactants differing in the molecular structure of the hydrophilic portion to control Phytophthora nicotianae in tomato substrate culture. Crop Prot 26:1524–1531

    Google Scholar 

  • Derjaugin BW, Landau L (1941) Theory of the stability of strongly charged lyophobic sols and the adhesion of strongly charged particles in solutions of electrolytes. Acta Physiochim (USSR) 14:633–662

    Google Scholar 

  • Dunlap CA, Biresaw G, Jackson MA (2005) Hydrophobic and electrostatic cell surface properties of blastospores of the entomopathogenic fungus Paecilomyces fumosoroseus. Colloids Surf B Interfaces 46:261–266

    CAS  Google Scholar 

  • Dunlap CA, Jackson MA, Wright MS (2007) A foam formulation of Paecilomyces fumosoroseus, an entomopathogenic biocontrol agent. Biocontrol Sci Technol 17:513–523

    Google Scholar 

  • Eilenberg J, Hajek A, Lomer C (2001) Suggestions for unifying the terminology in biological control. BioControl 46:387–400

    Google Scholar 

  • Evans HC, Samson RA (1982) Cordyceps species and their anamorphs pathogenic on ants (Formicidae) in tropical forest ecosystems I. The Cephalotes (Myrmicinae) complex. Trans Br Mycol Soc 79:431–453

    Google Scholar 

  • Farenhorst M, Farina D, Scholte E-J, Takken W, Hunt RH, Coetzee M, Knols BGJ (2008) African water storage pots for the delivery of the entomopathogenic fungus Metarhizium anisopliae to the malaria vectors Anopheles gambiae s.s. and Anopheles funestus. Am J Trop Med Hyg 78:910–916

    PubMed  Google Scholar 

  • Faria M, Wraight SP (2001) Biological control of Bemisia tabaci with fungi. Crop Prot 20:767–778

    Google Scholar 

  • Faria MR, Wraight SP (2007) Mycoinsecticides and mycoacaricides: a comprehensive list with worldwide coverage and international classification of formulation types. Biol Control 43:237–256

    Google Scholar 

  • Fearon DT (1997) Seeking wisdom in innate immunity. Nature 388:323–324

    PubMed  Google Scholar 

  • Fefferman NH, Traniello JFA, Rosengaus RB, Calleri DV (2007) Disease prevention and resistance in social insects: modelling the survival consequences of immunity, hygienic behaviour, and colony organization. Behav Ecol Sociobiol 61:565–577

    Google Scholar 

  • Fernandez S, Groden E, Vandenberg JD, Furlong MJ (2001) The effect of mode of exposure to Beauveria bassiana on conidia acquisition and host mortality of Colorado potato beetle, Leptinotarsa decemlineata. J Invertebr Pathol 77:217–226

    CAS  PubMed  Google Scholar 

  • Forster WA, Kimberley MO, Zabkiewicz JA (2005) A universal spray droplet adhesion model. Trans Am Soc Agric Eng 48:1321–1330

    Google Scholar 

  • Fravel DR (2005) Commercialization and implementation of biocontrol. Ann Rev Phytopathol 43:337–359

    CAS  Google Scholar 

  • Friesen TJ, Holloway G, Hill GA, Pugsley TS (2006) Effect of conditions and protectants on the survival of Penicillium bilaiae during storage. Biocontrol Sci Technol 16:89–98

    Google Scholar 

  • Furlong MJ, Pell JK, Choo OngPek, Rahman SA (1995) Field and laboratory evaluation of a sex pheremone trap for the autodissemination of the fungal entomopathogen Zoophthora radicans (Entomophthorales) by the diamond-back moth, Plutella xylostella (Leptidoptera: Yponomeutidae). Bull Entomol Res 85:331–337

    Google Scholar 

  • Goettel MS, Roberts DW (1992) Mass production, formulation and field application of entomopathogenic fungi. In: Lomer CJ, Prior C (eds) Biological control of locusts and grasshoppers. CAB International, Wallingford, pp 230–238

    Google Scholar 

  • Hallsworth JE, Magan N (1994) Effect of carbohydrate type and concentration on polyhydroxy alcohol and trehalose content of conidia of three entomopathogenic fungi. Microbiology 140:2705–2713

    CAS  Google Scholar 

  • Hallsworth JE, Magan N (1995) Manipulation of intracellular glycerol and erythritol enhances germination of conidia at low water availability. Microbiology 141:1109–1115

    CAS  PubMed  Google Scholar 

  • Hallsworth JE, Magan N (1996) Culture age, temperature, and pH affect the polyol and trehalose contents of fungal propagules. Appl Environ Microbiol 62:2435–2442

    CAS  PubMed  Google Scholar 

  • Hartfield CM, Campbell CAM, Hardie J, Pickett JA, Wadhams LJ (2001) Pheromone traps for the dissemination of an entomopathogen by the damson-hop aphid Phorodon humuli. Biocontrol Sci Technol 11:401–410

    Google Scholar 

  • Hedgecock S, Moore D, Higgins PM, Prior C (1995) Influence of moisture content on temperature tolerance and storage of Metarhizium flavoviride conidia in an oil formulation. Biocontrol Sci Technol 5:371–377

    Google Scholar 

  • Hegedus DD, Bidochka MJ, Khachatourians GG (1990) Beauveria bassiana submerged conidia production in a defined medium containing chitin, two hexosamines or glucose. Appl Microbiol Biotechnol 33:641–647

    CAS  Google Scholar 

  • Hoagland RE, Boyette CD, Weaver MA, Abbas HK (2007) Bioherbicides: research and risk. Toxin Rev 26:313–342

    CAS  Google Scholar 

  • Holder DJ, Kirkland BH, Lewis MW, Keyhani NO (2007) Surface characteristics of the entomopathogenic fungus Beauveria (Cordyceps) bassiana. Microbiology 153:3448–3457

    CAS  PubMed  Google Scholar 

  • Hong TD, Gunn J, Ellis RH, Jenkins NE, Moore D (2001) The effect of storage environment on the longevity of conidia of Beauveria bassiana. Mycol Res 105:597–602

    Google Scholar 

  • Horn BW, Greene RL, Sorensen RB, Blankenship PD, Dorner JW (2001) Conidial movement of nontoxigenic Aspergillus flavus and A. parasiticus in peanut fields following application to soil. Mycopathologia 151:81–92

    CAS  PubMed  Google Scholar 

  • Hoy MA (2008) Acaricides and Miticides In: Capinera JL (ed) Encyclopedia of entomology 2nd ed. Springer Science+Media BV, 3:9–21

  • Hu G, Leger RJ (2002) Field studies using a recombinant mycoinsecticide (Metarhizium anisopliae) reveal that it is rhizosphere competent. Appl Environ Microbiol 68:6383–6387

    CAS  PubMed  Google Scholar 

  • Inglis GD, Goettel MS, Johnson DL (1993) Persistence of the entomopathogenic fungus, Beauveria bassiana, on phylloplanes of crested wheatgrass and alfalfa. Biol Control 3:258–270

    Google Scholar 

  • Inglis GD, Johnson DL, Goettel MS (1996) Effects of temperature on mycosis by Beauveria bassiana in grasshoppers. Biol Control 7:131–139

    Google Scholar 

  • Inglis GD, Ivie TJ, Duke GM, Goettel MS (2000) Influence of rain and conidial formulation on persistence of Beauveria bassiana on potato leaves and Colorado potato beetle larvae. Biol Control 18:55–64

    Google Scholar 

  • Jackson MA (1997) Optimizing nutritional conditions for the liquid culture production of effective fungal biological control agents. J Ind Microbiol Biotechnol 19:180–187

    CAS  Google Scholar 

  • Jackson MA (1999) Method for producing desiccation tolerant Paecilomyces fumosoroseus spores. US Patent number 5,968,808

  • Jackson MA (2007) The biotechnology of producing and stabilizing living, microbial biological control agents for insect and weed control. In: Hou CT, Shaw FJ (eds) Biocatalysis and biotechnology: functional foods and industrial products. CRC Press, Boca Raton, pp 533–543

    Google Scholar 

  • Jackson MA, Jaronski ST (2009) Production of microsclerotia of the fungal entomopathogen Metarhizium anisopliae and their potential for use as a biocontrol agent for soil-inhabiting insects. Mycol Res 113:842–850

    CAS  PubMed  Google Scholar 

  • Jackson MA, Schisler DA (1992) The composition and attributes of Colletotrichum truncatum spores are altered by the nutritional environment. Appl Environ Microbiol 58:2260–2265

    PubMed  CAS  Google Scholar 

  • Jackson MA, Schisler DA (1995) Liquid culture production of microsclerotia of Colletotrichum truncatum for use as bioherbicidal propagules. Mycol Res 99:879–884

    Google Scholar 

  • Jackson MA, Schisler DA (2002) Selecting fungal biocontrol agents amenable to production by liquid culture fermentation. Proceedings of 7th biocontrol working group meeting “Influence of a-biotic and biotic factors on biocontrol agents”. IOBC/WPRS Bull, pp 387–391

  • Jackson MA, Schisler DA, Slininger PJ, Boyette CD, Silman RW, Bothast RJ (1996) Fermentation strategies for improving the fitness of a bioherbicide. Weed Technol 10:645–650

    Google Scholar 

  • Jackson MA, McGuire MR, Lacey LA, Wraight SP (1997) Liquid culture production of desiccation tolerant blastospores of the bioinsecticidal fungus Paecilomyces fumosoroseus. Mycol Res 101:35–41

    Google Scholar 

  • Jackson MA, Cliquet S, Iten LB (2003) Media and fermentation processes for the rapid production of high concentrations of stable blastospores of the bioinsecticidal fungus Paecilomyces fumosoroseus. Biocontrol Sci Technol 13:23–33

    Google Scholar 

  • Jackson MA, Erhan S, Poprawski TJ (2006) Influence of formulation additives on the desiccation tolerance and storage stability of blastospores of the entomopathogenic fungus Paecilomyces fumosoroseus (Deuteromycotina: Hyphomycetes). Biocontrol Sci Technol 16:61–75

    Google Scholar 

  • Jana TK, Srivastava AK, Arora DK, Csery K (2000) Influence of growth and environmental conditions on cell surface hydrophobicity of Pseudomonas fluorescens in non-specific adhesion. Can J Microbiol 46:28–37

    CAS  PubMed  Google Scholar 

  • Jaronski ST (1997) New paradigms in formulating mycoinsecticides. In: Goss GR, Hopkinson MJ, Collins HM (eds) Pesticide formulations and applications systems: 17th Volume, ASTM STP 1328. Am Soc for Testing and Materials, pp 99–112

  • Jaronski ST (2007) Soil ecology of the entomopathogenic ascomycetes: a critical examination of what we (think) we know. In: Maniana K, Ekesi S (eds) Use of entomopathogenic fungi in biological pest management. Research SignPost, Trivandrum, pp 91–144

    Google Scholar 

  • Jaronski ST, Jackson MA (2008) Efficacy of Metarhizium anisopliae microsclerotial granules. Biocontrol Sci Technol 18:849–863

    Google Scholar 

  • Jenkins NE, Prior C (1993) Growth and formation of true conidia by Metarhizium flavoviride in a simple liquid medium. Mycol Res 97:1489–1494

    Google Scholar 

  • Jin X, Grigas KE, Johnson CA, Perry P, Miller DW (1999) Method for storing fungal conidia. US Patent number 5,989,898

  • Jin X, Streett DA, Dunlap CA, Lyn ME (2008) Application of hydrophilic-lipophilic balance (HLB) number to optimize a compatible non-ionic surfactant for dried aerial conidia of Beauveria bassiana. Biol Control 46:226–233

    CAS  Google Scholar 

  • Jung G, Mugnier J (1989) Low-water-activity inocula for biological control. US Patent number 4,886,664

  • Kassa A, Vidal SD, Zimmerman G (2004) Production and processing of Metarhizium anisopliae var. acridum submerged conidia for locust and grasshopper control. Mycol Res 108:93–100

    Google Scholar 

  • Keller S, Kessler P, Schweizer C (2003) Distribution of insect pathogenic soil fungi in Switzerland with special reference to Beauveria brongniartii and Metarhizium anisopliae. BioControl 48:307–319

    Google Scholar 

  • Klein MG, Lacey LA (1999) An attractant trap for autodissemination of entomopathogenic fungi into populations of the Japanese beetle Popillia japonica (Coleoptera: Scarabaeidae). Biocontrol Sci Technol 9:151–158

    Google Scholar 

  • Klingen I, Eilenberg J, Meadow R (2002) Effects of farming system, field margin, and bait insect on the occurrence of insect pathogenic fungi in soils. Agric Ecosyst Environ 91:191–198

    Google Scholar 

  • Lacey LA, Shapiro-Ilan DI (2008) Microbial control of insect pests in temperate orchard systems: potential for incorporation into IPM. Ann Rev Entomol 53:121–144

    CAS  Google Scholar 

  • Latchininsky AV, Schell SP, Lockwood JA (2007) Laboratory bioassays of vegetable oils as kairomonal phagostimulants for grasshoppers (Orthoptera: Acrididae). J Chem Ecol 33:1856–1866

    CAS  PubMed  Google Scholar 

  • Lavine MD, Strand MR (2002) Insect hemocytes and their role in immunity. Insect Biochem Mol Biol 32:1295–1309

    CAS  PubMed  Google Scholar 

  • Leal PC, Mascarello A, Derita M, Zuljan F, Nunes RJ, Zacchino S, Yunes RA (2009) Relation between lipophilicity of alkyl gallates and antifungal activity against yeasts and filamentous fungi. Bioorganic Medicinal Chem Lett 19:1793–1796

    CAS  Google Scholar 

  • Leger RJ (1991) Integument as a barrier to microbial infections. In: Buinnington K, Retnakaran A (eds) Physiology of the insect epidermis. CSIRO Publications, Melbourne, pp 284–306

    Google Scholar 

  • Leland JE, Behle RW (2005) Coating Beauveria bassiana with lignin for protection from solar radiation and effects on pathogenicity to Lygus lineolaris (Heteroptera: Miridae). Biocontrol Sci Technol 15:309–320

    Google Scholar 

  • Leland JE, Mullins DE, Vaughn LJ (2004) Water soluble uv-protective coatings for biological pesticides and process for making same. US Patent Application number 20040038825

  • Leland JE, Mullins DE, Vaughan LJ, Warren HL (2005) Effects of media composition on submerged culture spores of the entomopathogenic fungus, Metarhizium anisopliae var. acridum, part 1: comparison of cell wall characteristics and drying stability among three spore types. Biocontrol Sci Technol 15:379–392

    Google Scholar 

  • Li J, Feng MG (2009) Intraspecific tolerance of Metarhizium anisopliae conidia to the upper thermal limits of summer with a description of a quantitative assay system. Mycol Res 113:93–99

    PubMed  Google Scholar 

  • Lockwood JA, Narisu JA, Schell SP, Lockwood DR (2001) Canola oil as a kairomonal attractant of rangeland grasshoppers: an economical liquid bait for insecticide formulation. Intl J Pest Manag 47:185–194

    CAS  Google Scholar 

  • Lopez E, Orduz S (2003) Metarhizium anisopliae and Trichoderma viride for control of nests of the fungus-growing ant, Atta cephalotes. Biol Control 27:194–200

    Google Scholar 

  • Magan N (2001) Physiological approaches to improving the ecological fitness of fungal biocontrol agents. In: Butt TM, Jackson C, Magan N (eds) Fungi as biocontrol agents: progress, problems and potential. CAB International Publishing, Wallingford, pp 239–252

    Google Scholar 

  • Maranga RO, Hassanali A, Kaaya GP, Mueke JM (2006) Performance of a prototype baited-trap in attracting and infecting the tick Amblyomma variegatum (Acari: Ixodidae) in field experiments. Exp Appl Acarol 38:211–218

    CAS  PubMed  Google Scholar 

  • McCoy CM, Quintela ED, de Faria M (2002) Environmental persistence of entomopathogenic fungi. Factors affecting survival of entomopathogens. South Coop Ser Bull 400:20–30

    Google Scholar 

  • Meyling NV, Eilenberg J (2006) Occurrence and distribution of soil borne entomopathogenic fungi within a single organic agroecosystem. Agric Ecosyst Environ 113:336–341

    Google Scholar 

  • Müller U, Vogel P, Alber G, Schaub G (2008) The innate immune system of mammals and insects. In: Egesten A, Schmidt A, Herwald H (eds) Trends in innate immunity, contributions to microbiology. Karger AG, Basel, pp 21–44

  • Nchu F, Maniania NK, Touré A, Hassanali A, Eloff JN (2009) The use of a semiochemical bait to enhance exposure of Amblyomma variegatum (Acari: Ixodidae) to Metarhizium anisopliae (Ascomycota: Hypocreales). Vet Parasitol 160:279–284

    CAS  PubMed  Google Scholar 

  • Oros G, Cserhàti T, Vrbanovà A (1999) Relationship between the physicochemical parameters and biological activity of sulfosuccinic acid ester surfactants. Biochem Mol Biol Int 47:79–88

    CAS  PubMed  Google Scholar 

  • Pendland JC, Lopez-Lastra C, Boucias DG (1994) Laminin-binding sites on cell walls of the entomopathogen Nomuraea rileyi associated with growth and adherence to host tissues. Mycologia 86:327–335

    CAS  Google Scholar 

  • Poprawski TJ, Jackson MA (1999) Laboratory activity of blastospores of Paecilomyces fumosoroseus on Bemisia argentifolii nymphs, 1997. Arthropod Manag Tests 24:399–400

    Google Scholar 

  • Quesada-Moraga E, Navas-Cortez JA, Maranhao AA, Ortiz-Urquiza A, Santiago-Alvarez C (2007) Factors affecting the occurrence and distribution of entomopathogenic fungi in natural and cultivated soils. Mycol Res 111:947–966

    PubMed  Google Scholar 

  • Reddy NP, Khan PAA, Devi KU, Victor JS, Sharma HC (2008) Assessment of the suitability of Tinopal as an enhancing adjuvant in formulations of the insect pathogenic fungus Beauveria bassiana (Bals.) Vuillemin. Pest Manag Sci 64:909–915

    CAS  PubMed  Google Scholar 

  • Renn N, Bywater AF, Barson G (1999) A bait formulated with Metarhizium anisopliae for the control of Musca domestica L. (Dipt., Muscidae) assessed in large-scale laboratory enclosures. J Appl Entomol 123:309–314

    Google Scholar 

  • Rosengaus RB, Maxmen AB, Coates LE, Traniello JFA (1998) Disease resistance: a benefit of sociality in the dampwood termite Zootermopsis angusticollis (Isoptera: Termopsidae). Behav Ecol Sociobiol 44:125–134

    Google Scholar 

  • Sanchez-Murillo RI, de la Torre-Martinez M, Aguirre-Linares J, Herrera-Estrella A (2004) Light-regulated asexual reproduction in Paecilomyces fumosoroseus. Microbiology 150:311–319

    CAS  PubMed  Google Scholar 

  • Shah PA, Pell JK (2003) Entomopathogenic fungi as biological control agents. Appl Microbiol Biotechnol 61:413–423

    CAS  PubMed  Google Scholar 

  • Shah FA, Allen N, Wright CJ, Butt TM (2007) Repeated in vitro subculturing alters spore surface properties and virulence of Metarhizium anisopliae. FEMS Microbiol Lett 276:60–66

    CAS  PubMed  Google Scholar 

  • Shapiro-Ilan DI, Cottrell TE, Jackson MA, Wood BW (2008) Virulence of Hypocreales fungi to pecan aphids (Hemiptera: Aphididae) in the laboratory. J Invertebr Pathol 99:312–317

    PubMed  Google Scholar 

  • Shearer JF, Jackson MA (2006) Liquid culturing of microsclerotia of Mycoleptodiscus terrestris, a potential biological control agent for the management of hydrilla. Biol Control 38:298–306

    Google Scholar 

  • Shimuzu S, Tsuchitani Y, Matsumoto T (1993) Production of an extracellular protease by Beauveria bassiana in the haemolymph of the silkworm, Bombyx mori. Lett Appl Microbiol 16:291–294

    Google Scholar 

  • Sieglaff DH, Pereira RM, Capinera JL (1997) Pathogenicity of Beauveria bassiana and Metarhizium flavoviride (Deuteromycotina) to Schistocerca americana (Orthoptera: Acrididae). J Econ Entomol 90:1539–1545

    Google Scholar 

  • Smith RJ, Grula EA (1982) Toxic components of the larval surface of the corn earworm (Heliothis zea). J Invertebr Pathol 39:15–22

    CAS  Google Scholar 

  • Smith SM, Moore D, Karanja LW, Chandi EA (1999) Formulation of vegetable fat pellets with pheromone and Beauveria bassiana to control the larger grain borer, Prostephanus truncatus (Horn). Pestic Sci 55:711–718

    CAS  Google Scholar 

  • Speare AT (1920) On certain entomogenous fungi. Mycologia 12:62–76

    Google Scholar 

  • Sprenkel RK, Brooks WM (1977) Winter survival of the entomogenous fungus Nomuraea rileyi in North Carolina. J Invertebr Pathol 29:262–266

    Google Scholar 

  • Stamets P (2006) Mycoattractants and mycopesticides. US Patent number 7,122,176

  • Sun J-Z, Fuxa JR, Richter A, Ring D (2008) Interactions of Metarhizium anisopliae and tree-based mulches in repellence and mycoses against Coptotermes formosanus (Isoptera: Rhinotermitidae). Environ Entomol 37:755–763

    CAS  PubMed  Google Scholar 

  • Thomas MB (1999) Ecological approaches and the development of “truly integrated” pest management. Proc Nat Acad Sci USA 96:5944–5951

    CAS  PubMed  Google Scholar 

  • Thomas KC, Khachatourians GG, Ingledew WM (1986) Production and properties of Beauveria bassiana conidia cultivated in submerged culture. Can J Microbiol 33:12–20

    Article  Google Scholar 

  • van der Valk H (2007) Desert locust technical series. Review of the efficacy of Metarhizium anisopliae var. acridum against the desert locust. Plant production and protection division, Locusts and other migratory pest group No. AGP/DL/TS/34, p 81

  • van Oss CJ (1995) Hydrophobicity of biosurfaces—origin, quantitative determination and interaction energies. Colloids Surf B Biointerfaces 5:91–110

    Google Scholar 

  • Vega FE, Jackson MA, McGuire MR (1999) Germination of conidia and blastospores of Paecilomyces fumosoroseus on the cuticle of the silverleaf whitefly, Bemisia argentifolii. Mycopathologia 147:33–35

    CAS  PubMed  Google Scholar 

  • Vega FE, Dowd PF, Lacey LA, Pell JK, Jackson DM, Klein M (2007) Dissemination of beneficial microbial agents by insects. In: Lacey LA, Kaya H (eds) Field manual of techniques in invertebrate pathology. Second edition. Application and evaluation of pathogens for control of insects and other invertebrate pests. Springer, The Netherlands, pp 127–146

    Google Scholar 

  • Vega FE, Goettel MS, Blackwell M, Chandler D, Jackson MA, Keller S, Koike M, Maniania NK, Monzón A, Ownley BH, Pell JK, Rangel DEH, Roy HE (2009) Fungal entomopathogens: new insights on their ecology. Fungal Ecol 2:149–159

    Google Scholar 

  • Verwey EJW, Overbeek JG (1948) Theory of the stability of lyophobic colloids. Elsevier, Amsterdam

    Google Scholar 

  • Vestergaard S, Butt TM, Bresciani J, Gillespie AT, Eilenberg J (1999) Light and electron microscopy studies of the infection of the western flower thrips Frankliniella occidentalis (Thysanoptera: Thripidae) by the entomopathogenic fungus Metarhizium anisopliae. J Invertebr Pathol 73:25–33

    PubMed  Google Scholar 

  • Villamizar L, Grijalba E, Zuluaga V, Gomez M, Cotes AM (2009) Evaluation of some parameters influencing the activity of a fungal biocontrol agent used for Bemisia tabaci control. IOBC/WPRS Bull 45:327–330

    Google Scholar 

  • Wang C, Leger RJ (2007) The MAD1 adhesin of Metarhizium anisopliae links adhesion with blastospore production and virulence to insects, and the MAD2 adhesin enables attachment to plants. Eukaryot Cell 6:808–816

    CAS  PubMed  Google Scholar 

  • Wang L, Ligoxygakis P (2006) Pathogen recognition and signaling in the Drosophila innate immune response. Immunobiol 211:251–261

    CAS  Google Scholar 

  • Wang C, Powell JE (2004) Cellulose bait improves the effectiveness of Metarhizium anisopliae as a microbial control of termites (Isoptera: Rhinotermitidae). Biol Control 30:523–529

    Google Scholar 

  • Webb JS, Robson GD, Handley PS, Nixon M, Eastwood IM, Greenhalgh M (1999) Plasticizers increase adhesion of the deteriogenic fungus Aureobasidium pullulans to polyvinyl chloride. Appl Environ Microbiol 65:3575–3581

    CAS  PubMed  Google Scholar 

  • Wraight SP, Jackson MA, De Kock SL (2001) Production, stabilization and formulation of fungal biocontrol agents. In: Butt TM, Jackson C, Magan N (eds) Fungi as biocontrol agents: progress, problems and potential. CABI Publishing, Wallingford, pp 253–288

    Google Scholar 

  • Wright MS, Connick WJ Jr, Jackson MA (2003) Use of Paecilomyces spp. as pathogenic agents against subterranean termites. US Patent number 6,660,291

  • Yanagawa A, Yokohari F, Shimizu S (2008) Defence mechanism of the termite, Coptotermes formosanus Shiraki, to entomopathogenic fungi. J Invertebr Pathol 97:165–170

    PubMed  Google Scholar 

  • Yeo H, Pell JK, Alderson PG, Clark SJ, Pye BJ (2003) Laboratory evaluation of temperature effects on the germination and growth of entomopathogenic fungi and on their pathogenicity to two aphid species. Pest Manag Sci 59:156–165

    CAS  PubMed  Google Scholar 

  • Ying SH, Feng MG (2006) Medium components and culture conditions affect the thermotolerance of aerial conidia of the fungal biocontrol agent Beauveria bassiana. Lett Appl Microbiol 43:331–335

    CAS  PubMed  Google Scholar 

  • Zimmermann G (2007) Review on safety of the entomopathogenic fungus Metarhizium anisopliae. Biocontrol Sci Technol 17:879–920

    Google Scholar 

  • Zimmermann G (2008) The entomopathogenic fungi Isaria farinosa (formerly Paecilomyces farinosus) and the Isaria fumosorosea species complex (formerly Paecilomyces fumosoroseus): biology, ecology and use in biological control. Biocontrol Sci Technol 18:865–901

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Jackson.

Additional information

Handling Editor: Helen Roy

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jackson, M.A., Dunlap, C.A. & Jaronski, S.T. Ecological considerations in producing and formulating fungal entomopathogens for use in insect biocontrol. BioControl 55, 129–145 (2010). https://doi.org/10.1007/s10526-009-9240-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-009-9240-y

Keywords

Navigation