Skip to main content
Log in

Biological control of Radopholus similis in banana by combined application of the mutualistic endophyte Fusarium oxysporum strain 162, the egg pathogen Paecilomyces lilacinus strain 251 and the antagonistic bacteria Bacillus firmus

  • Published:
BioControl Aims and scope Submit manuscript

Abstract

The biological control efficacy of single or multiple applications of the mutualistic endophyte Fusarium oxysporum strain 162, the egg pathogen Paecilomyces lilacinus strain 251 and the antagonistic bacteria Bacillus firmus toward Radopholus similis was investigated in pot trials with banana under glasshouse conditions. R. similis was controlled substantially in single and combined applications of F. oxysporum with P. lilacinus or B. firmus. The combination of F. oxysporum and P. lilacinus caused a 68.5% reduction in nematode density whereas the individual applications reduced the density by 27.8% and 54.8% over the controls, respectively. Combined application of F. oxysporum and B. firmus was the most effective treatment in controlling R. similis on banana (86.2%), followed by B. firmus alone (63.7%). The compatibility of the biocontrol agents, as well the capacity of F. oxysporum to colonize banana roots in the absence or presence of P. lilacinus was also investigated. P. lilacinus did not adversely affect endophytic colonization by F. oxysporum. Biological control of R. similis in banana can therefore be enhanced via combined applications of antagonists with different modes of action that target different stages in the infection process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alabouvette C, Schippers B, Lemanceau P, Bakker PAHM (1998) Biological control of Fusarium Wilts: toward development of commercial products. In: Boland GJ, Kuykendall LD (eds) Plant-microbe interaction and biological control. Marcel Dekker, New York, USA, pp 15–36

    Google Scholar 

  • Baker R (1990) An overview of current and future strategies and models for biological control. In: Hornby D (ed) Biological control of soil-borne plant pathogens. CAB International, Wallingford, UK, pp 375–388

    Google Scholar 

  • Blachinsky D, Antonov J, Bercovitz A, El-ad B, Feldman K, Husid A, Lazare M, Marcov N, Shamai I, Keren-Zur M (2007) BioNem WP: a unique tool for nematode control. http://agrogreen.co.il/PDF/Bionem%20IOBC%202006.pdf. Cited 2007

  • Carneiro RDG, Cayrol JC (1991) Relationship between inoculum density of the nematophagous fungus Paecilomyces lilacinus and control of Meloidogyne arenaria on tomato. Rev Nematol 14:629–634

    Google Scholar 

  • Dababat AA, Sikora RA (2007) Influence of the mutualistic endophyte Fusarium oxysporum 162 on Meloidogyne incognita attraction and invasion. Nematology 9:771–776

    Article  Google Scholar 

  • Dube B, Smart GC (1987) Biological control of Meloidogyne incognita by Paecilomyces lilacinus and Pasteuria penetrans. J Nematol 19:222–227

    Google Scholar 

  • Else A, Declerck S, De Waele D (2001) Effect of Glomus intraradices on the reproduction of the burrowing nematode (Radopholus similis) in dixenic culture. Mycorrhiza 11:49–51

    Article  Google Scholar 

  • Ferris JM (1985) Crop loss prediction and modelling for management decisions. In: Zuckermann BN, Mai WF, Harrison MB (eds) Plant nematology laboratory manual. University of Massachusetts, Agric. Exp. Station, Amherst, MA, pp 27–33

    Google Scholar 

  • Giannakou IO, Karpouzas DG, Athanasiadou DP (2004) A novel non-chemical nematicide for the control of root-knot nematodes. Appl Soil Ecol 26:69–79

    Article  Google Scholar 

  • Giannakou IO, Anastasiadis IA, Gowen SR, Prophetou-Athanasiadou DA (2007) Effect of a non-chemical nematicide combined with soil solarization for the control of root-knot nematodes. Crop Prot 26:1644–1654

    Article  CAS  Google Scholar 

  • Gowen SR, Quénéherve P, Fogain R (2005) Nematode Parasites of Bananas and Plantains. In: Luc M, Sikora RA, Bridge J (eds) Plant parasitic nematodes in subtropical and tropical agriculture, 2nd edn. CAB International, Wallingford, UK, pp 611–643

    Google Scholar 

  • Griesbach M (2000) Occurrence of mutualistic fungal endophytes in bananas (Musa spp.) and their potential as biocontrol agents of banana weevil Cosmopolites sordidus (German) (Coleoptera: Curculionidae) in Uganda. Dissertation, Rheinische Friedrich-Wilhelms-Universität Bonn, Germany

  • Hallmann J, Sikora RA (1994) Influence of Fusarium oxysporum, a mutualistic fungal endophyte, on Meloidogyne incognita infection of tomato. J Plant Dis Protect 101:475–481

    Google Scholar 

  • Holland RJ, Williams KL, Khan A (1999) Infection of Meloidogyne javanica by Paecilomyces lilacinus. Nematology 1:131–139

    Article  Google Scholar 

  • Jatala P, Kaltenback R, Bocangel M, Devaus AJ, Campos R (1980) Field application of Paecilomyces lilacinus for controlling Meloidogyne incognita on potatoes. J Nematol 12:226–227

    Google Scholar 

  • Keren-Zur M, Antonov J, Bercovitz A, Feldman K, Husid A, Kenan G, Markov N, Rebhun M (2000) Bacillus firmus formulations for the safe control of root-knot nematodes. Proceeding of Brighton crop protection conference on pests and diseases, vol 2A, pp 47–52

  • Khan A, Williams KL, Nevalainen HKM (2006a) Infection of plant-parasitic nematodes by Paecilomyces lilacinus and Monacrosporium lysipagum. BioControl 51:659–678

    Article  Google Scholar 

  • Khan A, Williams KL, Nevalainen HKM (2006b) Control of plant-parasitic nematodes by Paecilomyces lilacinus and Monacrosporium lysipagum in pot trials. BioControl 51:643–658

    Article  Google Scholar 

  • Khan HU, Ahmad R, Ahmed W, Khan SM, Khan MA (2001) Evaluation of the combined effects of Paecilomyces lilacinus and Trichoderma harzianum against root-knot disease of tomato. J Biol Sci 3:139–142

    Google Scholar 

  • Kiewnick S, Sikora RA (2006) Biological control of the root-knot nematode Meloidogyne incognita by Paecilomyces lilacinus strain 251. Biol Control 38:179–187

    Article  Google Scholar 

  • Larkin RP, Fravel DR (1999) Mechanisms of action and dose-response relationships governing biological control of Fusarium wilt of tomato by non-pathogenic Fusarium spp. Phytopathology 89:1152–1161

    Article  PubMed  CAS  Google Scholar 

  • Mendoza AR, Sikora RA, Kiewnick S (2004) Efficacy of Paecilomyces lilacinus (strain 251) for the control of Radopholus similis in banana. Commun Agric Appl Biol Sci 69:165–172

    Google Scholar 

  • Mendoza AR, Sikora RA, Kiewnick S (2007) Influence of Paecilomyces lilacinus strain 251 on biological control of the burrowing nematode Radopholus similis in banana. Nematropica 37:203–213

    Google Scholar 

  • Mendoza AR, Kiewnick S, Sikora RA (2008) In vitro activity of Bacillus firmus against the burrowing nematodes Radopholus similis, the root knot nematode Meloidogyne incognita and the stem nematode Ditylenchus dipsaci. Biocontrol Sci Technol 18:377−389

    Article  Google Scholar 

  • Menjivar RD (2005) Estudio del potencial antagonista de hongos endofíticos para el biocontrol del nematodo barrenador Radopholus similis en plantaciones de banano en Costa Rica. Dissertation, Centro Agronómico Tropical de Investigación y Enseñanza (CATIE), Costa Rica

  • Meyer S, Roberts PD (2002) Combinations of biocontrol agents for management of plant-parasitic nematodes and soilborne plant-pathogenic fungi. J Nematol 34:1–8

    Google Scholar 

  • Moens T, Araya M, Swennen R, De Waele D (2004) Enhanced biodegradation of nematicides after repetitive applications and its effect on root and yield parameters in commercial banana plantations. Biol Fertil Soils 39:407–414

    Article  CAS  Google Scholar 

  • Niere BI, Speijer PR, Gold CS, Sikora RA (1999) Fungal endophytes from bananas for the biocontrol of Radopholus similis. In: Frison EA, Gold CS, Karamura EB, Sikora RA (eds) Mobilizing IPM for sustainable banana production in Africa. INIBAP, Montpellier, France, pp 313–318

    Google Scholar 

  • Niere B, Sikora RA, Speijer PR (2001) Mutualistic endophytic fungi role in biocontrol and safety of application. In: Sikora RA (ed) Integrated control of soil pests. IOBC/WPRS Bulletin 24, pp 117–120

  • Niere B, Gold CS, Coyne D (2004) Can fungal endophytes control soilborne pests in banana? Bulletin OILB/SROP 27:203–209

    Google Scholar 

  • Paparu P, Dubois T, Gold CS, Adipala E, Niere B, Coyne D (2004) Inoculation, colonization and distribution of fungal endophytes in Musa tissue culture plants. Uganda J Agric Sci 9:583–589

    Google Scholar 

  • Paparu P, Dubois T, Gold CS, Niere B, Adipala E, Coyne D (2008) Screenhouse and field persistence of nonpathogenic endophytic Fusarium oxysporum in Musa tissue culture plants. Mic Ecol 55:561–568

    Article  Google Scholar 

  • Pereira JO, Vieira MLC, Azevedo JL (1999) Endophytic fungi from Musa acuminata and their reintroduction into axenic plants. World J Microbiol Biotechnol 15:37–40

    Article  Google Scholar 

  • Pocasangre LE, Sikora RA, Vilich V, Schuster RP (2000) Survey of banana endophytic fungi from Central America and screening for biological control of Radopholus similis. Acta Hortic 531:283–289

    Google Scholar 

  • Pocasangre LE, Menjivar RD, zum Felde A, Riveros AS, Rosales FE, Sikora RA (2006) Endophytic fungi as biological control agents of plant parasitic nematodes in banana. International Meeting ACORBAT 2006. Available: http://bananas.bioversityinternational.org/files/files/pdf/publications/excerpts_acorbat_2006_vol1.pdf. Cited 15 Nov 2007

  • Siddiqui IA, Qureshi SA, Sultana V, Ehteshamul-Haque S, Ghaffar A (2000) Biological control of rot-root knot disease complex of tomato. Plant Soil 227:163–169

    Article  CAS  Google Scholar 

  • Sikora RA, Pocasangre L (2004) New technologies to increase root health and crop production. InfoMusa 13:25–29

    Google Scholar 

  • Sikora RA, Schäfer K, Dababat AA (2007) Modes of action associated with microbially induce in planta suppression of plant-parasitic nematodes. Aust Plant Pathol 36:124–134

    Article  Google Scholar 

  • Sikora RA, Pocasangre L, zum Felde A, Niere B, Vu TT, Dababat AA (2008) Mutualistic endophytic fungi and in-planta supprerssiveness to plant parasitic nematodes. Biol Control 46:15–23

    Article  Google Scholar 

  • Speijer PR, De Waele D (1997) INIBAP technical guidelines. 1. Screening of Musa germplasm for resistance and tolerance to nematodes. INIBAP, Montpellier, France

    Google Scholar 

  • Speijer PR, Kajumba C, Ssango F (1999) East Africa highland banana production as influenced by nematodes and crop management in Uganda. Int J Pest Manag 45:41–49

    Article  Google Scholar 

  • Stirling GR (1991) Biological control of plant parasitic nematodes. CAB International, Wallingford, UK, p 282

    Google Scholar 

  • Trouvelot S, Olivain C, Recorbet G, Migheli Q, Alabouvette C (2002) Recovery of Fusarium oxysporum Fo47 mutants affected in their antagonistic activity after transposon mutagenesis. Phytopathology 92:936–945

    Article  PubMed  CAS  Google Scholar 

  • Vu T, Hauschild R, Sikora RA (2006) Fusarium oxysporum endophytes induced systemic resistance against Radopholus similis on banana. Nematology 8:847–852

    Article  Google Scholar 

  • Wick RL (2006) Seeking alternatives to Nemacur: Evaluation of natural suppression and testing new products. Summary report. Available: www.nertf.org/15.pdf. Cited 2007

  • zum Felde A, Pocasangre LE, Carñizares Monteros CA, Sikora RA, Rosales FE, Riveros AS (2006) Effect of combined inoculations of endophytic fungi on the biocontrol of Radopholus similis. InfoMusa 15:12–18

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Catholic Academic Exchange Service (KAAD) in Germany, for funding this research through a PhD scholarship. We are also thankful to Prophyta GmbH, Germany and AgroGreen the Biological division of Minrav Infrastructures, Israel for providing product samples of the biological nematicide Bioact® WG and Bionem® WP, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander R. Mendoza.

Additional information

Handling editor: Ralf-Udo Ehlers

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mendoza, A.R., Sikora, R.A. Biological control of Radopholus similis in banana by combined application of the mutualistic endophyte Fusarium oxysporum strain 162, the egg pathogen Paecilomyces lilacinus strain 251 and the antagonistic bacteria Bacillus firmus . BioControl 54, 263–272 (2009). https://doi.org/10.1007/s10526-008-9181-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10526-008-9181-x

Keywords