, Volume 51, Issue 6, pp 779–794 | Cite as

Characterization of Bacillus thuringiensis isolates from Argentina that are potentially useful in insect pest control

  • Corina M. BerónEmail author
  • Graciela L. Salerno


In order to find novel strains of Bacillus thuringiensis that are toxic to some of the major pests that impact economically important crops in Argentina, we initiated a search for B. thuringiensis isolates native to Argentina. We succeeded in assembling a collection of 41 isolates, some of which show a high potential to be used in biological control programs against lepidopteran and coleopteran pests. About 90% of the strains showed toxicity against Spodoptera frugiperda and Anticarsia gemmatalis, two important lepidopteran pests in Argentina. It is noteworthy that only one of these strains contained a cry1-type gene, while another isolate showed a dual toxicity against the lepidopteran and coleopteran insects assayed. Genetic characterization of the strains suggests that the collection likely harbors novel Cry proteins that may be of potential use in biological insect pest control.


Bacillus thuringiensis isolation insecticidal activity native strains strain collection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors thank Dr. Ed Etxeberria (Citrus Research Center, University of Florida) and Dr. Robert Igarashi (Department of Plant and Microbial Biology, University of California, Berkeley) for their critical reading of the manuscript, and Dr. Guillermo Cabrera Walsh (South American Biological Control Laboratory – Hurlingham, Argentina-USDA), Dr. Juan José García (CEPAVE, Argentina) and Dr. Rose Monnerat (CENARGEN – EMBRAPA, Brasilia, Brazil) for providing insect larvae. This work was supported by grants from the Universidad Nacional de Mar del Plata and FIBA, Argentina.


  1. Beegle C.C., T. Yamamoto, 1992. History of Bacillus thuringiensis Berliner research and development. Can. J. Entomol. 124:587–616.CrossRefGoogle Scholar
  2. Ben-Dov E., Zaritsky A., Dahan E., Barak Z., Sinai R., Manasherob R., Khameaev A., Troitskaya E., Dubitsky A., Berezina N., Y. Margalith, 1997. Extended screening by PCR for seven cry-group genes from field-collected strains of Bacillus thuringiensis. Appl. Environ. Microbiol. 63:4883–4890.PubMedGoogle Scholar
  3. Benintende G.B., Lopez-Meza J.E., Cozzi J.G., J.E. Ibarra, 1999. Novel non-toxic isolates of Bacillus thuringiensis. Lett. Appl. Microbiol. 29:151–155.CrossRefGoogle Scholar
  4. Benintende G.B., Lopez-Meza J.E., Cozzi J.G., Piccinetti C.F., J.E. Ibarra, 2000. Characterization of INTA 51-3, a new atypical strain of Bacillus thuringiensis from Argentina. Curr. Microbiol. 41:396–401.PubMedCrossRefGoogle Scholar
  5. Bernhard K., Jarrett P., Meadows M., Butt J., Ellis D.J., Roberts G.M., Pauli S., Rodgers P., H.D. Burges, 1997. Natural isolates of Bacillus thuringiensis: worldwide distribution, characterization, and activity against insect pests. J. Invertebr. Pathol. 70:59–68.CrossRefGoogle Scholar
  6. Berón C.M., Curatti L., G.L. Salerno, 2005. New strategy for identification of novel cry-type genes from Bacillus thuringiensis strains. Appl. Environ. Microbiol. 71:761–765.PubMedCrossRefGoogle Scholar
  7. Bohorova N., Maciel A.M., Brito R.M., Aguilar L., Ibarra J.E., D. Hoisington 1996. Selection and characterization of Mexican strains of Bacillus thuringiensis active against four major lepidopteran maize pest. Entomophaga 41:153–165.Google Scholar
  8. Bravo A., Sarabia S., Lopez L., Ontiveros H., Abarca C., Ortíz A., Ortíz M., Lina L., Villalobos F.J., Peña G., Nuñez-Valdez M.E., Soberón M., R. Quintero, 1998. Characterization of cry genes in a Mexican Bacillus thuringiensis strain collection. Appl. Environ. Microbiol. 64:4965–4972.PubMedGoogle Scholar
  9. Burges H.D., J.A. Hurst, 1977. Ecology of Bacillus thuringiensis in storage moths. J. Invertebr. Pathol. 30:131–139.CrossRefGoogle Scholar
  10. Carozzi N.B., Kramer V.C., Warren G.W., Evola S., M.G. Koziel, 1991. Prediction of insecticidal activity of Bacillus thuringiensis strains by polymerase chain reaction product profiles. Appl. Environ. Microbiol. 57:3057–3061.PubMedGoogle Scholar
  11. Chak K.-F., Chao D.-C., Tseng M.-Y., Kao S.-S, Tuan S.-J., T.-Y. Feng, 1994. Determination and distribution of cry-type genes of Bacillus thuringiensis isolates from Taiwan. Appl. Environ. Microbiol. 60:2415–2420.PubMedGoogle Scholar
  12. Chaufaux J., Marchal M., Gilois N., Jehanno I., C. Buisson, 1997. Investigation of natural strains of Bacillus thuringiensis in different biotypes throughout the world. Can. J. Microbiol. 43:337–343.CrossRefGoogle Scholar
  13. Chilcott C.N., P.J. Wigley, 1993. Isolation and toxicity of Bacillus thuringiensis from soil and insect habitats in New Zealand. J. Invertebr. Pathol. 61:244–247.CrossRefGoogle Scholar
  14. Consolo V.F., Salerno G.L., C.M. Berón C.M, 2003. Laboratory screening of entomopathogenic fungi and identification of a Beauveria bassiana isolate with potential as biocontrol agent of Diabrotica speciosa. BioControl 48:705–712.CrossRefGoogle Scholar
  15. Damgaard P.H., Abdel-Hameed A., Eilenberg J., P. Smits, 1998. Natural occurrence of Bacillus thuringiensis on grass foliage. World J. Microbiol. Biotechnol. 14:239–242CrossRefGoogle Scholar
  16. Delécluse A., Charles J.F., Klier A., G. Rapoport, 1991. Deletion by in vivo recombination shows that the 28-kilodalton cytolytic polypeptide from Bacillus thuringiensis subsp. israelensis is not essential for mosquitocidal activity. J. Bacteriol. 173:3374–3381.PubMedGoogle Scholar
  17. DeLucca A.J., II, Palmgren M.S., H. De Barjac, 1984. A new serovar of Bacillus thuringiensis from grain dust: Bacillus thuringiensis serovar colmeri (serovar 21). J. Invertebr. Pathol. 43:437–438.CrossRefGoogle Scholar
  18. DeLucca A.J. II, Simonson J. and A.D. Larson, 1981. Bacillus thuringiensis distribution in soils of the United States. Can. J. Microbiol. 27:865–870.PubMedCrossRefGoogle Scholar
  19. de Maagd R.A., Bravo A. and N. Crickmore, 2001. How Bacillus thuringiensis has evolved specific toxins to colonize the insect world. Trends Genet. 17:193–199.PubMedCrossRefGoogle Scholar
  20. de Maagd R.A., Bravo A., Berry C., Crickmore N. and H. Schnepf, 2003. Structure, diversity, and evolution of protein toxins from spore-forming entomopathogenic bacteria. Annu. Rev. Genet. 37:409–433.PubMedCrossRefGoogle Scholar
  21. Dias S.C., Sagardoy M.A., Silva S.F. and J.M.C.S. Dias, 1999. Characterization and pathogenic evaluation of Bacillus thuringiensis and Bacillus sphaericus isolates from Argentinean soils. BioControl 44:59–71.CrossRefGoogle Scholar
  22. Feitelson J.S., Payne J. and L. Kim, 1992. Bacillus thuringiensis: insects and beyond. Biotechnology 10:271–275.CrossRefGoogle Scholar
  23. Forsyth G. and N.A Logan, 2000. Isolation of Bacillus thuringiensis from Northern Victoria Land, Antarctica. Lett. Appl. Microbiol. 30:263–266.PubMedCrossRefGoogle Scholar
  24. Franco-Rivera A., Benintende G., Cozzi J., Baizabal-Aguirre V.M., Valdez-Alarcon J.J. and J.E. Lopez-Meza, 2004. Molecular characterization of Bacillus thuringiensis strains from Argentina. Antonie Van Leeuwenhoek 86:87–92.PubMedCrossRefGoogle Scholar
  25. Hastowo S., Lay B.W. and M. Ohba, 1992. Naturally occurring Bacillus thuringiensis in Indonesia. J. Appl. Bacteriol. 73:108–113.Google Scholar
  26. Hossain M.A., Ahmed S. and S. Hoque S, 1997. Abundance and distribution of Bacillus thuringiensis in the agricultural soil of Bangladesh. J. Invertebr. Pathol. 70:221–225.PubMedCrossRefGoogle Scholar
  27. Ibarra J.E., del Rincón M.C., Orduz S., Noriega D., Benintende G., Monnerat R., Regis L., de Oliveira C.M., Lanz H., Rodriguez M.H., Sanchez J., Pena G. and A. Bravo, 2003. Diversity of Bacillus thuringiensis strains from Latin America with insecticidal activity against different mosquito species. Appl. Environ. Microbiol. 69:5269–5274PubMedCrossRefGoogle Scholar
  28. Joung, K.B., J.C. and J.C. Côte, 2000. A review of the environmental impacts of the microbial insecticide Bacillus thuringiensis. Technical bulletin N° 29. Horticultural Research and Development Center.
  29. Lacey L.A., Frutos R., Kaya H.K. and P. Vail, 2001. Insect pathogens as biological control agents: do they have a future? Biol. Control. 21:230–248.CrossRefGoogle Scholar
  30. Laemmli U.K., 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 15:680–685.CrossRefGoogle Scholar
  31. Martin P.A.W. and R.S. Travers, 1989. World wide abundance and distribution of Bacillus thuringiensis isolates. Appl. Environ. Microbiol. 55:2437–2442.PubMedGoogle Scholar
  32. Meadows M.P., Ellis D.J., Butt J., Jarret P. and D. Burges, 1992. Distribution, frequency, and diversity of B. thuringiensis in an animal feed mill. Appl. Environ. Microbiol. 58:1344–1350.PubMedGoogle Scholar
  33. Nester, E.W., L.S. Thomashow, M. Metz and M. Gordon, 2002. 100 Years of Bacillus thuringiensis: a critical scientific assessment. ASM. [online.]
  34. Parra, J.R.P., 1998. Criação de insetos para estudos com patógenos. In: Sérgio Batista Alves (ed), Controle Microbiano de Insetos. ESALQ/USP, Brazil, pp. 1015–1037.Google Scholar
  35. Renart, J. and I.V. Sandoval, 1984. Western blots. In: W.B. Jacoby (ed), Methods in Enzymology, vol. 104. Academic Press, Orlando, pp. 455–460.Google Scholar
  36. Salerno G., Pagnussat G. and H. Pontis, 1998. Studies of sucrose–phosphate synthase from rice leaves. Cell. Mol. Biol. 44:407–416.PubMedGoogle Scholar
  37. Sambrook J. and D.W. Russell, 2001. Molecular Cloning: A Laboratory Manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor.Google Scholar
  38. Schnepf E., Crickmore N., Van Rie J., Lereclus D., Baum J., Feitelson J., Zeigler D.R. and D.H. Dean, 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62:775–806.PubMedGoogle Scholar
  39. Smith R.A. and G.A. Couche, 1991. The phylloplane as a source of Bacillus thuringiensis variants. Appl. Environ. Microbiol. 57:311–315.PubMedGoogle Scholar
  40. Uribe D., Martinez W. and J. Cerón , 2003. Distribution and diversity of cry genes in native strains of Bacillus thuringiensis obtained from different ecosystems from Colombia. J. Invertebr. Pathol. 82:119–127.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2006

Authors and Affiliations

  1. 1.Centro de Investigaciones Biológicas, Fundación para Investigaciones Biológicas Aplicadas (FIBA)CONICETMar del PlataArgentina

Personalised recommendations