Skip to main content
Log in

Homologous Protein Domains in Superkingdoms Archaea, Bacteria, and Eukaryota and the Problem of the Origin of Eukaryotes

  • Theoretical Biology
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

The distribution of protein domains was analyzed in superkingdoms Archaea, Bacteria, and Eukaryota. About a half of eukaryotic domains have prokaryotic origin. Many domains related to information processing in the nucleocytoplasm were inherited from archaea. Sets of domains associated with metabolism and regulatory and signaling systems were inherited from bacteria. Many signaling and regulatory domains common for bacteria and eukaryotes were responsible for the cellular interaction of bacteria with other components of the microbial community but were involved in coordination of the activity of eukaryotic organelles and cells in multicellular organisms. Many eukaryotic domains of bacterial origin could not originate from ancestral mitochondria and plastids but rather were adopted from other bacteria. An archaeon with the induced incorporation of alien genetic material could be the ancestor of the eukaryotic nucleocytoplasm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Brocks, J.J., Logan, G.A., Buick, R., and Summons, R.E., Archean Molecular Fossils and the Early Rise of Eukaryotes, Science, 1999, vol. 285, no.5430, pp. 1025–1027.

    Article  PubMed  Google Scholar 

  • Canback, B., Andersson, S.G.E., and Kurland, C.G., The Global Phylogeny of Glycolytic Enzymes, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, no.9, pp. 6097–6102.

    Article  PubMed  Google Scholar 

  • Dolan, M.F., Melnitsky, H., Margulis, L., and Kolnicki, R., Motility Proteins and the Origin of the Nucleus, Anat. Rec., 2002, no. 268, pp. 290–301.

  • Dyall, S.D., Brown, M.T., and Johnson, P.J., Ancient Invasions: From Endosymbionts to Organelles, Science, 2004, vol. 304, no.5668, pp. 253–257.

    Article  PubMed  Google Scholar 

  • Emelyanov, V.V., Mitochondrial Connection to the Origin of the Eukaryotic Cell, Eur. J. Biochem., 2003, vol. 270, no.8, pp. 1599–1618.

    Article  PubMed  Google Scholar 

  • Esser, C., Ahmadinejad, N., Wiegand, C., et al., A Genome Phylogeny for Mitochondria among Alpha-Proteobacteria and a Predominantly Eubacterial Ancestry of Yeast Nuclear Genes, Mol. Biol. Evol., 2004, vol. 21, no.9, pp. 1643–1660.

    Article  PubMed  Google Scholar 

  • Feng, D.F., Cho, G., and Doolittle, R.F., Determining Divergence Times with a Protein Clock: Update and Reevaluation, Proc. Natl. Acad. Sci. USA, 1997, vol. 94, no.24, pp. 13028–13033.

    Article  PubMed  Google Scholar 

  • Gabaldon, T. and Huynen, M.A., Reconstruction of the Proto-Mitochondrial Metabolism, Science, 2003, vol. 301, no.5633, p. 609.

    Article  PubMed  Google Scholar 

  • Gupta, R.S., Protein Phylogenies and Signature Sequences: A Reappraisal of Evolutionary Relationships among Archaebacteria, Eubacteria, and Eukaryotes, Microbiol Mol. Biol. Rev., 1998, vol. 62, no.4, pp. 1435–1491.

    PubMed  Google Scholar 

  • Gusev, M.V. and Mineeva, L.A., Mikrobiologiya (Microbiology), Moscow: Mosk. Gos. Univ., 1992, 3rd ed.

    Google Scholar 

  • Hartman, H. and Fedorov, A., The Origin of the Eukaryotic Cell: a Genomic Investigation, Proc. Nat. Acad. Sci. USA, 2002, vol. 99, no.3, pp. 1420–1425.

    Article  Google Scholar 

  • Helenius, A. and Aebi, M., Intracellular Functions of N-Linked Glycans, Science, 2001, vol. 291, no.5512, pp. 2364–2369.

    Article  PubMed  Google Scholar 

  • Jenkins, C., Samudrala, R., Anderson, I., et al., Genes for the Cytoskeletal Protein Tubulin in the Bacterial Genus Prosthecobacter, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, no.26, pp. 17049–17054.

    Article  PubMed  Google Scholar 

  • Kurland, C.G. and Andersson, S.G.E., Origin and Evolution of the Mitochondrial Proteome, Microbiol. Mol. Biol. Rev., 2000, vol. 64, no.4, pp. 786–820.

    Article  PubMed  Google Scholar 

  • Margulis, L., Rol’ simbioza v evolyutsii kletki (The Role of Symbiosis in Evolution of the Cell), Moscow: Mir, 1983.

    Google Scholar 

  • Margulis, L., Dolan, M.F., and Guerrero, R., The Chimeric Eukaryote: Origin of the Nucleus from the Karyomastigont in Amitochondriate Protists, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, no.13, pp. 6954–6959.

    Article  PubMed  Google Scholar 

  • Markov, A.V., On the Origin of the Eukaryotic Cell, Paleontol. Zh., 2005, vol. 39, no.2.

  • Martin, W., Gene Transfer from Organelles To the Nucleus: Frequent and in Big Chunks, Proc. Natl. Acad. Sci. USA, 2003, vol. 100, no.15, pp. 8612–8614.

    Article  PubMed  Google Scholar 

  • Martin, W. and Muller, M., The Hydrogen Hypothesis for the First Eukaryote, Nature, 1998, no. 392, pp. 37–41.

  • Martin, W. and Russell, M.J., On the Origins of Cells: A Hypothesis for the Evolutionary Transitions from Abiotic Geochemistry to Chemoautotrophic Prokaryotes, and from Prokaryotes to Nucleated Cells, Phil. Trans. R. Soc. Lond. B Biol. Sci., 2003, vol. 358, no.1429, pp. 59–85.

    Article  Google Scholar 

  • Mayer, F., Cytoskeletons in Prokaryotes, Cell. Biol. Int., 2003, vol. 27, no.5, pp. 429–438.

    Article  PubMed  Google Scholar 

  • Ng, W.V., Kennedy, S.P., Mahairas, G.G., et al., Genome Sequence of Halobacterium Species NRC-1, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, no.22, pp. 12176–12181.

    Article  PubMed  Google Scholar 

  • Noon, K.R., Guymon, R., Crain, P.F., et al., Influence of Temperature on tRNA Modification in Archaea: Methanococcoides burtonii (Optimum Growth Temperature [T opt], 23 Degrees C) and Stetteria hydrogenophila (T opt, 95 Degrees C), J. Bacteriol., 2003, vol. 185, no.18, pp. 5483–5490.

    Article  PubMed  Google Scholar 

  • Slesarev, A.I., Belova, G.I., Kozyavkin, S.A., and Lake, J.A., Evidence for an Early Prokaryotic Origin of Histones H2A and H4 prior To the Emergence of Eukaryotes, Nucleic Acid Res., 1998, vol. 26, no.2, pp. 427–430.

    Article  PubMed  Google Scholar 

  • Theissen, U., Hoffmeister, M., Grieshaber, M., and Martin, W., Single Eubacterial Origin of Eukaryotic Sulfide: Quinone Oxidoreductase, a Mitochondrial Enzyme Conserved from the Early Evolution of Eukaryotes during Anoxic and Sulfidic Times, Mol. Biol. Evol., 2003, vol. 20, no.9, pp. 1564–1574.

    Article  PubMed  Google Scholar 

  • Van den Ent, F., Amos, L.A., and Lowe, J., Prokaryotic Origin of the Actin Cytoskeleton, Nature, 2001, vol. 413, no.6851, pp. 39–44.

    Article  PubMed  Google Scholar 

  • Vellai, T. and Vida, G., The Origin of Eukaryotes: the Difference between Prokaryotic and Eukaryotic Cells, Proc. R. Soc. Lond. B Biol. Sci., 1999, vol. 266, no.1428, pp 1571–1577.

    Article  Google Scholar 

  • Walden, W.E., From Bacteria to Mitochondria: Aconitase Yields Surprises, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, no.7, pp. 4138–4140.

    Article  PubMed  Google Scholar 

  • Zavarzin, G.A., Development of Microbial Communities in the Earth’s History, in Problemy doantropogennoi evolyutsii biosfery (Problems of Pre-anthropogenic Evolution of the Biosphere), Moscow: Nauka, 1993, pp. 212–222.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Izvestiya Akademii Nauk, Seriya Biologicheskaya, No. 4, 2005, pp. 389–400.

Original Russian Text Copyright © 2005 by Markov, Kulikov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markov, A.V., Kulikov, A.M. Homologous Protein Domains in Superkingdoms Archaea, Bacteria, and Eukaryota and the Problem of the Origin of Eukaryotes. Biol Bull Russ Acad Sci 32, 321–330 (2005). https://doi.org/10.1007/s10525-005-0108-0

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10525-005-0108-0

Keywords

Navigation