Skip to main content
Log in

Characteristics of natural strains of naphthalene-utilizing bacteria of the genus Pseudomonas

  • Microbiology
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

Sixty-three strains of bacteria capable of utilizing naphthalene as the sole source of carbon and energy were isolated from 137 samples of soil taken in different sites in Belarus. All isolated bacteria contained extrachromosomal genetic elements of 45 to 150 kb in length. It was found that bacteria of 31 strains contained the IncP-9 incompatibility group plasmids, bacteria of one strain carried a plasmid containing replicons IncP-9 and IncP-7, and bacteria of 31 strains contained unidentified plasmids. Primary identification showed that the hosts of plasmids of naphthalene biodegradation are fluorescent bacteria of the genus Pseudomonas (P. putida and P. aeruginosa; a total of 47 strains) and unidentified nonfluorescent microorganisms (a total of 16 strains). In addition to the ability to utilize naphthalene, some strains exhibited the ability to stimulate the growth and development of the root system of Secale cereale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Boronin, A.M., Rhizosphere Bacteria of the Genus Pseudomonas Facilitating Growth and Development of Bacteria, Sorosovskii Obrazovatel’nyi Zh., 1996, no. 10, pp. 25–31.

  • Chakrabarty, A.M., Genetic Fusion of Incompatible Plasmids in Pseudomonas, Proc. Natl. Acad. Sci. USA, 1973, vol. 70, no.6, pp. 1641–1644.

    PubMed  CAS  Google Scholar 

  • Davies, J.I. and Evans, W.C., Oxidative Metabolism of Naphthalene by Soil Pseudomonads. The Ring Fission Metabolism, J. Biochem., 1964, vol. 91, p. 251.

    CAS  Google Scholar 

  • Doudoroff, M. and Palleroni, N.J., Genus Pseudomonas Migula, Buchanan, R.E. and Gibsons, T., Eds., in Bergey’s Manual of Determinative Bacteriology, 8th Ed., Baltimore: The Williams and Wikins Co., 1974, pp. 217–243.

    Google Scholar 

  • Eckhardt, T., A Rapid Method for the Identification of Plasmid Desoxyribonucleic Acid in Bacteria, Plasmid, 1978, vol. 1, no.4, pp. 584–588.

    PubMed  CAS  Google Scholar 

  • Evans, C.G.T, Herbert, D, and Tempest, D.M, The Continuous Cultivation of Microorganisms, in Methods in Microbiology, Norris, J.R., Ed., New York: Academic, 1970, pp. 277–327.

    Google Scholar 

  • Greated, A. and Thomas, C.M., A Pair of PCR Primers for IncP-9 Plasmids, Microbiology, 1999, vol. 145, pp. 3003–3004.

    PubMed  Google Scholar 

  • Hansen, J.B. and Olsen, R.H., Isolation of Large Bacterial Plasmids and Characterization of the P2 Incompatibility Group Plasmids PMG1 and PMG5, J. Bacteriol., 1978, vol. 135, no.1, pp. 227–238.

    PubMed  CAS  Google Scholar 

  • Head, I.M., Bioremediation: Towards a Credible Technology, Microbiology, 1998, vol. 144, pp. 599–608.

    Article  CAS  Google Scholar 

  • Kochetkov, V.V. and Boronin, A.M., Plasmids Involved in Naphthalene Biodegradation That Are Incompatible with the IncP-2 and IncP-7 Group Plasmids, Genetika (Moscow), 1985, vol. 21, no.4, pp. 522–529.

    PubMed  CAS  Google Scholar 

  • Kochetkov, V.V. and Boronin, A.M., A Comparative Study of Plasmids That Control Biodegradation of Naphthalene by Pseudomonas Culture, Mikrobiologiya, 1984, vol. 53, no.4, pp. 639–644.

    CAS  Google Scholar 

  • Krasowiak, R., Smalla, K., Sokolov, S., Kosheleva, I., Sevastyanovich, Y., Titok, M., and Thomas, C.M., PCR Primers for Detection and Characterisation of IncP-9 Plasmids, FEMS Microbiol. Ecol., 2002, vol. 42, pp. 217–225.

    CAS  Google Scholar 

  • Monticello, D.J., Bakker, D., Schell, M., and Finnerty, W.R., Plasmid-Borne Tn5 Insertion Mutation Resulting in Accumulation of Gentisate from Salicylate, Appl. Environ. Microbiol., 1985, vol. 49, no.4, pp. 761–764.

    PubMed  CAS  Google Scholar 

  • Mordukhova, E.A., Kochetkov, V.V., Polikarpova, F.Ya., and Boronin, A.M., Synthesis of Indole-3-Acetic Acid by Pseudomonas: The Effect of Plasmids Involved in Naphthalene Biodegradation, Prikl. Biokhim. Mikrobiol., 1998, vol. 34, no.3, pp. 287–292.

    CAS  Google Scholar 

  • Ornston, L.N. and Parke, D., Evolution of Catabolic Pathways, Biochem. Soc. Trans., 1976, vol. 4, no.3, pp. 468–472.

    PubMed  CAS  Google Scholar 

  • Sambrook, J., Fritsch, E.F., and Maniatis, T., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor, New York: Cold Spring Harbor Lab., 1989.

    Google Scholar 

  • Yen, K.M. and Gunsalus, I.C., Plasmid Gene Organization: Naphthalene/Salicylate Oxidation, Proc. Natl. Acad. Sci. USA, 1982, vol. 79, no.3, pp. 874–878.

    PubMed  CAS  Google Scholar 

  • te Riele, H., Michel, B., and Ehrlich, S.D., Single-Stranded Plasmid DNA in Bacillus subtilis and Staphylococcus aureus, Proc. Natl. Acad. Sci. USA, 1979, vol. 8, pp. 2541–2545.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Translated from Izvestiya Akademii Nauk, Seriya Biologicheskaya, No. 2, 2005, pp. 162–167.

Original Russian Text Copyright © 2005 by Levchuk, Vasilenko, Bulyga, Titok, Thomas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levchuk, A.A., Vasilenko, S.L., Bulyga, I.M. et al. Characteristics of natural strains of naphthalene-utilizing bacteria of the genus Pseudomonas . Biol Bull Russ Acad Sci 32, 128–132 (2005). https://doi.org/10.1007/s10525-005-0018-1

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10525-005-0018-1

Keywords

Navigation