Skip to main content

A collective analysis of lifespan-extending compounds in diverse model organisms, and of species whose lifespan can be extended the most by the application of compounds

Abstract

Research on aging and lifespan-extending compounds has been carried out using diverse model organisms, including yeast, worms, flies and mice. Many studies reported the identification of novel lifespan‐extending compounds in different species, some of which may have the potential to translate to the clinic. However, studies collectively and comparatively analyzing all the data available in these studies are highly limited. Here, by using data from the DrugAge database, we first identified top compounds in terms of their effects on percent change in average lifespan of diverse organisms, collectively (n = 1728). We found that, when data from all organisms studied were combined for each compound, aspirin resulted in the highest percent increase in average lifespan (52.01%), followed by minocycline (27.30%), N-acetyl cysteine (17.93%), nordihydroguaiaretic acid (17.65%) and rapamycin (15.66%), in average. We showed that minocycline led to the highest percent increase in average lifespan among other compounds, in both Drosophila melanogaster (28.09%) and Caenorhabditis elegans (26.67%), followed by curcumin (11.29%) and gluconic acid (5.51%) for D. melanogaster and by metformin (26.56%), resveratrol (15.82%) and quercetin (9.58%) for C. elegans. Moreover, we found that top 5 species whose lifespan can be extended the most by compounds with lifespan-extending properties are Philodina acuticornis, Acheta domesticus, Aeolosoma viride, Mytilina brevispina and Saccharomyces cerevisiae (211.80%, 76%, 70.26%, 55.18% and 45.71% in average, respectively). This study provides novel insights on lifespan extension in model organisms, and highlights the importance of databases with high quality content curated by researchers from multiple resources, in aging research.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

Data availability

Data used in the present study was obtained from DrugAge database (http://genomics.senescence.info/drugs/) [Build 3 (09/07/2019)] (Barardo et al. 2017).

Code availability

R code used in the analysis was provided as a supplementary material.

References

  1. Allaire JJ, Xie Y, McPherson J, Luraschi J, Ushey K, Atkins A, Wickham H, Cheng J, Chang W, Iannone R (2021) rmarkdown: dynamic documents for R. R package version 2.10. https://rmarkdown.rstudio.com

  2. Avelar RA, Ortega JG, Tacutu R, Tyler EJ, Bennett D, Binetti P, Budovsky A, Chatsirisupachai K, Johnson E, Murray A, Shields S, Tejada-Martinez D, Thornton D, Fraifeld VE, Bishop CL, de Magalhães JP (2020) A multidimensional systems biology analysis of cellular senescence in aging and disease. Genome Biol 21(1):91. https://doi.org/10.1186/s13059-020-01990-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Ayuda-Durán B, González-Manzano S, Miranda-Vizuete A, Dueñas M, Santos-Buelga C, González-Paramás AM (2019) Epicatechin modulates stress-resistance in C. elegans via insulin/IGF-1 signaling pathway. PLoS ONE 14(1):e0199483. https://doi.org/10.1371/journal.pone.0199483

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Bains JS, Garg SK, Sharma SP (1998) Effect of butylated hydroxyanisole on catalase activity and malondialdehyde content in aging Zaprionus paravittiger (diptera). Gerontology 44(5):262–266. https://doi.org/10.1159/000022022

    CAS  Article  PubMed  Google Scholar 

  5. Barardo D, Thornton D, Thoppil H, Walsh M, Sharifi S, Ferreira S, Anžič A, Fernandes M, Monteiro P, Grum T, Cordeiro R, De-Souza EA, Budovsky A, Araujo N, Gruber J, Petrascheck M, Fraifeld VE, Zhavoronkov A, Moskalev A, de Magalhães JP (2017) The DrugAge database of aging-related drugs. Aging Cell 16(3):594–597. https://doi.org/10.1111/acel.12585

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Belinha I, Amorim MA, Rodrigues P, de Freitas V, Moradas-Ferreira P, Mateus N, Costa V (2007) Quercetin increases oxidative stress resistance and longevity in Saccharomyces cerevisiae. J Agric Food Chem 55(6):2446–2451. https://doi.org/10.1021/jf063302e

    CAS  Article  PubMed  Google Scholar 

  7. Berkel C, Cacan E (2021) Analysis of longevity in Chordata identifies species with exceptional longevity among taxa and points to the evolution of longer lifespans. Biogerontology 22(3):329–343. https://doi.org/10.1007/s10522-021-09919-w

    CAS  Article  PubMed  Google Scholar 

  8. Bock MJ, Jarvis GC, Corey EL, Stone EE, Gribble KE (2019) Maternal age alters offspring lifespan, fitness, and lifespan extension under caloric restriction. Sci Rep 9(1):3138. https://doi.org/10.1038/s41598-019-40011-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Bonilla E, Contreras R, Medina-Leendertz S, Mora M, Villalobos V, Bravo Y (2012) Minocycline increases the life span and motor activity and decreases lipid peroxidation in manganese treated Drosophila melanogaster. Toxicology 294(1):50–53. https://doi.org/10.1016/j.tox.2012.01.016

    CAS  Article  PubMed  Google Scholar 

  10. Bonkowski MS, Sinclair DA (2016) Slowing ageing by design: the rise of NAD+ and sirtuin-activating compounds. Nat Rev Mol Cell Biol 17(11):679–690. https://doi.org/10.1038/nrm.2016.93

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Brack C, Bechter-Thüring E, Labuhn M (1997) N-acetylcysteine slows down ageing and increases the life span of Drosophila melanogaster. Cell Mol Life Sci 53(11–12):960–966. https://doi.org/10.1007/pl00013199

    CAS  Article  PubMed  Google Scholar 

  12. Brunquell J, Morris S, Snyder A, Westerheide SD (2018) Coffee extract and caffeine enhance the heat shock response and promote proteostasis in an HSF-1-dependent manner in Caenorhabditis elegans. Cell Stress Chaperones 23(1):65–75. https://doi.org/10.1007/s12192-017-0824-7

    CAS  Article  PubMed  Google Scholar 

  13. Budovsky A, Craig T, Wang J, Tacutu R, Csordas A, Lourenço J, Fraifeld VE, de Magalhães JP (2013) LongevityMap: a database of human genetic variants associated with longevity. Trends Genet 29(10):559–560. https://doi.org/10.1016/j.tig.2013.08.003

    CAS  Article  PubMed  Google Scholar 

  14. Calabrese EJ, Mattson MP (2017) How does hormesis impact biology, toxicology, and medicine? NPJ Aging Mech Dis 3:13. https://doi.org/10.1038/s41514-017-0013-z

    Article  PubMed  PubMed Central  Google Scholar 

  15. Calabrese EJ, Dhawan G, Kapoor R, Iavicoli I, Calabrese V (2015) What is hormesis and its relevance to healthy aging and longevity? Biogerontology 16(6):693–707. https://doi.org/10.1007/s10522-015-9601-0

    Article  PubMed  Google Scholar 

  16. Calabrese EJ, Agathokleous E, Kapoor R, Kozumbo WJ, Rattan SIS (2019) Re-analysis of herbal extracts data reveals that inflammatory processes are mediated by hormetic mechanisms. Chem Biol Interact 314:108844. https://doi.org/10.1016/j.cbi.2019.108844

    CAS  Article  PubMed  Google Scholar 

  17. Calvert S, Tacutu R, Sharifi S, Teixeira R, Ghosh P, de Magalhães JP (2016) A network pharmacology approach reveals new candidate caloric restriction mimetics in C. elegans. Aging Cell 15(2):256–66. https://doi.org/10.1111/acel.12432

    CAS  Article  PubMed  Google Scholar 

  18. Carretero M, Gomez-Amaro RL, Petrascheck M (2015) Pharmacological classes that extend lifespan of Caenorhabditis elegans. Front Genet 6:77. https://doi.org/10.3389/fgene.2015.00077

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Castoldi F, Pietrocola F, Maiuri MC, Kroemer G (2018) Aspirin induces autophagy via inhibition of the acetyltransferase EP300. Oncotarget 9(37):24574–24575. https://doi.org/10.18632/oncotarget.25364

    Article  PubMed  PubMed Central  Google Scholar 

  20. Castoldi F, Humeau J, Martins I, Lachkar S, Loew D, Dingli F, Durand S, Enot D, Bossut N, Chery A, Aprahamian F, Demont Y, Opolon P, Signolle N, Sauvat A, Semeraro M, Bezu L, Baracco EE, Vacchelli E, Pol JG, Lévesque S, Bloy N, Sica V, Maiuri MC, Kroemer G, Pietrocola F (2020) Autophagy-mediated metabolic effects of aspirin. Cell Death Discov 6(1):129. https://doi.org/10.1038/s41420-020-00365-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Chen Y, Liu X, Jiang C, Liu L, Ordovas JM, Lai CQ, Shen L (2018) Curcumin supplementation increases survival and lifespan in Drosophila under heat stress conditions. BioFactors 44(6):577–587. https://doi.org/10.1002/biof.1454

    CAS  Article  PubMed  Google Scholar 

  22. Cheng J, Wang H, Bartlett M, Stevenson D, Pan Y, Ho MS, Ren Y (2021) Antioxidant blend of curcumin and broccoli seed extract exhibits protective effect on neurodegeneration and promotes Drosophila lifespan. ASN Neuro. https://doi.org/10.1177/17590914211015033

    Article  PubMed  PubMed Central  Google Scholar 

  23. Cornelius C, Perrotta R, Graziano A, Calabrese EJ, Calabrese V (2013) Stress responses, vitagenes and hormesis as critical determinants in aging and longevity: mitochondria as a “chi.” Immun Ageing 10(1):15. https://doi.org/10.1186/1742-4933-10-15

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Czachor J, Miłek M, Galiniak S, Stępień K, Dżugan M, Mołoń M (2020) Coffee extends yeast chronological lifespan through antioxidant properties. Int J Mol Sci 21(24):9510. https://doi.org/10.3390/ijms21249510

    CAS  Article  PubMed Central  Google Scholar 

  25. de Magalhães JP (2014) Why genes extending lifespan in model organisms have not been consistently associated with human longevity and what it means to translation research. Cell Cycle 13(17):2671–2673. https://doi.org/10.4161/15384101.2014.950151

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. de Magalhães JP, Costa J (2009) A database of vertebrate longevity records and their relation to other life-history traits. J Evol Biol 22(8):1770–1774. https://doi.org/10.1111/j.1420-9101.2009.01783.x

    Article  PubMed  Google Scholar 

  27. Driver C, Georgeou A (2003) Variable effects of vitamin E on Drosophila longevity. Biogerontology 4(2):91–95. https://doi.org/10.1023/a:1023347803932

    CAS  Article  PubMed  Google Scholar 

  28. Ehninger D, Neff F, Xie K (2014) Longevity, aging and rapamycin. Cell Mol Life Sci 71(22):4325–4346. https://doi.org/10.1007/s00018-014-1677-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Galenza A, Foley E (2020) Glucose extends lifespan through enhanced intestinal barrier integrity in Drosophila. BioRxiv. https://doi.org/10.1101/2020.03.20.000968

    Article  Google Scholar 

  30. Galenza A, Hutchinson J, Campbell SD, Hazes B, Foley E (2016) Glucose modulates Drosophila longevity and immunity independent of the microbiota. Biol Open 5(2):165–173. https://doi.org/10.1242/bio.015016

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Gómez-Linton DR, Alavez S, Alarcón-Aguilar A, López-Diazguerrero NE, Konigsberg M, Pérez-Flores LJ (2019) Some naturally occurring compounds that increase longevity and stress resistance in model organisms of aging. Biogerontology 20(5):583–603. https://doi.org/10.1007/s10522-019-09817-2

    Article  PubMed  Google Scholar 

  32. Gribble KE (2021) Brachionus rotifers as a model for investigating dietary and metabolic regulators of aging. Nutr Healthy Aging 6(1):1–15. https://doi.org/10.3233/NHA-200104

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gribble KE, Welch DB (2013) Life-span extension by caloric restriction is determined by type and level of food reduction and by reproductive mode in Brachionus manjavacas (Rotifera). J Gerontol A 68(4):349–358. https://doi.org/10.1093/gerona/gls170

    Article  Google Scholar 

  34. Grolemund G, Wickham H (2017) R for data science. O’Reilly Media, Sebastopol

    Google Scholar 

  35. Han B, Sivaramakrishnan P, Lin CJ, Neve IAA, He J, Tay LWR, Sowa JN, Sizovs A, Du G, Wang J, Herman C, Wang MC (2017) Microbial genetic composition tunes host longevity. Cell 169(7):1249–1262.e13. https://doi.org/10.1016/j.cell.2017.05.036. Erratum in: Cell 2018;173(4):1058

  36. Hartsough LA, Park M, Kotlajich MV, Lazar JT, Han B, Lin CJ, Musteata E, Gambill L, Wang MC, Tabor JJ (2020) Optogenetic control of gut bacterial metabolism to promote longevity. Elife 9:e56849. https://doi.org/10.7554/eLife.56849

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Henry L, Wickham H (2020) purrr: functional programming tools. R package version 0.3.4. https://CRAN.R-project.org/package=purrr

  38. Holtze S, Gorshkova E, Braude S, Cellerino A, Dammann P, Hildebrandt TB, Hoeflich A, Hoffmann S, Koch P, Terzibasi Tozzini E, Skulachev M, Skulachev VP, Sahm A (2021) Alternative animal models of aging research. Front Mol Biosci 8:660959. https://doi.org/10.3389/fmolb.2021.660959

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Houtkooper RH, Mouchiroud L, Ryu D, Moullan N, Katsyuba E, Knott G, Williams RW, Auwerx J (2013) Mitonuclear protein imbalance as a conserved longevity mechanism. Nature 497(7450):451–457. https://doi.org/10.1038/nature12188

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Huang XB, Mu XH, Wan QL, He XM, Wu GS, Luo HR (2017) Aspirin increases metabolism through germline signalling to extend the lifespan of Caenorhabditis elegans. PLoS ONE 12(9):e0184027. https://doi.org/10.1371/journal.pone.0184027

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Hunt PR, Son TG, Wilson MA, Yu QS, Wood WH, Zhang Y, Becker KG, Greig NH, Mattson MP, Camandola S, Wolkow CA (2011) Extension of lifespan in C. elegans by naphthoquinones that act through stress hormesis mechanisms. PLoS ONE 6(7):e21922. https://doi.org/10.1371/journal.pone.0021922

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Iannone R, Cheng J, Schloerke B (2021) gt: easily create presentation-ready display tables. R package version 0.3.1. https://CRAN.R-project.org/package=gt

  43. Iside C, Scafuro M, Nebbioso A, Altucci L (2020) SIRT1 activation by natural phytochemicals: an overview. Front Pharmacol 11:1225. https://doi.org/10.3389/fphar.2020.01225

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Janssens GE, Houtkooper RH (2020) Identification of longevity compounds with minimized probabilities of side effects. Biogerontology 21(6):709–719. https://doi.org/10.1007/s10522-020-09887-7

    Article  PubMed  PubMed Central  Google Scholar 

  45. Janssens GE, Lin XX, Millan-Ariño L, Kavšek A, Sen I, Seinstra RI, Stroustrup N, Nollen EAA, Riedel CG (2019) Transcriptomics-based screening identifies pharmacological inhibition of Hsp90 as a means to defer aging. Cell Rep 27(2):467-480.e6. https://doi.org/10.1016/j.celrep.2019.03.044

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. Kakkar R, Bains JS, Sharma SP (1996) Effect of vitamin E on life span, malondialdehyde content and antioxidant enzymes in aging Zaprionus paravittiger. Gerontology 42(6):312–321. https://doi.org/10.1159/000213809

    CAS  Article  PubMed  Google Scholar 

  47. Kampkötter A, Timpel C, Zurawski RF, Ruhl S, Chovolou Y, Proksch P, Wätjen W (2008) Increase of stress resistance and lifespan of Caenorhabditis elegans by quercetin. Comp Biochem Physiol B 149(2):314–323. https://doi.org/10.1016/j.cbpb.2007.10.004

    CAS  Article  PubMed  Google Scholar 

  48. Kassambara A (2020) ggpubr: ‘ggplot2’ based publication ready plots. R package version 0.4.0. https://CRAN.R-project.org/package=ggpubr

  49. Kim J, Kundu M, Viollet B, Guan KL (2011) AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol 13(2):132–141. https://doi.org/10.1038/ncb2152

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Kulkarni AS, Gubbi S, Barzilai N (2020) Benefits of metformin in attenuating the hallmarks of aging. Cell Metab 32(1):15–30. https://doi.org/10.1016/j.cmet.2020.04.001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Lagouge M, Argmann C, Gerhart-Hines Z, Meziane H, Lerin C, Daussin F, Messadeq N, Milne J, Lambert P, Elliott P, Geny B, Laakso M, Puigserver P, Auwerx J (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alpha. Cell 127(6):1109–1122. https://doi.org/10.1016/j.cell.2006.11.013

    CAS  Article  PubMed  Google Scholar 

  52. Lawson T, Stohs S (1985) Changes in endogenous DNA damage in aging mice in response to butylated hydroxyanisole and oltipraz. Mech Ageing Dev 30(2):179–185. https://doi.org/10.1016/0047-6374(85)90006-5

    CAS  Article  PubMed  Google Scholar 

  53. Le Bourg E (2009) Hormesis, aging and longevity. Biochim Biophys Acta 1790(10):1030–1039. https://doi.org/10.1016/j.bbagen.2009.01.004

    CAS  Article  PubMed  Google Scholar 

  54. Lee MC, Park JC, Yoon DS, Han J, Kang S, Kamizono S, Om AS, Shin KH, Hagiwara A, Lee JS (2018) Aging extension and modifications of lipid metabolism in the monogonont rotifer Brachionus koreanus under chronic caloric restriction. Sci Rep 8(1):1741

    Article  Google Scholar 

  55. Li H, Roxo M, Cheng X, Zhang S, Cheng H, Wink M (2019) Pro-oxidant and lifespan extension effects of caffeine and related methylxanthines in Caenorhabditis elegans. Food Chem X 1:100005. https://doi.org/10.1016/j.fochx.2019.100005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. Li H, Chen FJ, Yang WL, Qiao HZ, Zhang SJ (2021) Quercetin improves cognitive disorder in aging mice by inhibiting NLRP3 inflammasome activation. Food Funct 12(2):717–725. https://doi.org/10.1039/d0fo01900c

    CAS  Article  PubMed  Google Scholar 

  57. López-Martínez G, Hahn DA (2014) Early life hormetic treatments decrease irradiation-induced oxidative damage, increase longevity, and enhance sexual performance during old age in the Caribbean fruit fly. PLoS ONE 9(1):e88128. https://doi.org/10.1371/journal.pone.0088128

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Martínez-Cisuelo V, Gómez J, García-Junceda I, Naudí A, Cabré R, Mota-Martorell N, López-Torres M, González-Sánchez M, Pamplona R, Barja G (2016) Rapamycin reverses age-related increases in mitochondrial ROS production at complex I, oxidative stress, accumulation of mtDNA fragments inside nuclear DNA, and lipofuscin level, and increases autophagy, in the liver of middle-aged mice. Exp Gerontol 83:130–138. https://doi.org/10.1016/j.exger.2016.08.002

    CAS  Article  PubMed  Google Scholar 

  59. Martinez-Miguel VE, Lujan C, Espie-Caullet T, Martinez-Martinez D, Moore S, Backes C, Gonzalez S, Galimov ER, Brown AEX, Halic M, Tomita K, Rallis C, von der Haar T, Cabreiro F, Bjedov I (2021) Increased fidelity of protein synthesis extends lifespan. Cell Metab. https://doi.org/10.1016/j.cmet.2021.08.017

    Article  PubMed  Google Scholar 

  60. Marwick B (2017) Rrtools: creates a reproducible research compendium. https://github.com/benmarwick/rrtools

  61. Massie HR, Williams TR (1979) Increased longevity of Drosophila melanogaster with lactic and gluconic acids. Exp Gerontol 14(3):109–115. https://doi.org/10.1016/0531-5565(79)90025-1

    CAS  Article  PubMed  Google Scholar 

  62. Mora M, Medina-Leendertz SJ, Bonilla E, Terán RE, Paz MC, Arcaya JL (2013) Minocycline, but not ascorbic acid, increases motor activity and extends the life span of Drosophila melanogaster. Invest Clin 54(2):161–170

    PubMed  Google Scholar 

  63. Mora M, Bonilla E, Medina-Leendertz S, Bravo Y, Arcaya JL (2014) Minocycline increases the activity of superoxide dismutase and reduces the concentration of nitric oxide, hydrogen peroxide and mitochondrial malondialdehyde in manganese treated Drosophila melanogaster. Neurochem Res 39(7):1270–1278. https://doi.org/10.1007/s11064-014-1309-z

    CAS  Article  PubMed  Google Scholar 

  64. Moskalev A, Chernyagina E, Tsvetkov V, Fedintsev A, Shaposhnikov M, Krut’ko V, Zhavoronkov A, Kennedy BK (2016) Developing criteria for evaluation of geroprotectors as a key stage toward translation to the clinic. Aging Cell 15(3):407–415. https://doi.org/10.1111/acel.12463

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. Müller K, Wickham H (2021) tibble: simple data frames. R package version 3.1.3. https://CRAN.R-project.org/package=tibble

  66. Niraula P, Kim MS (2019) N-Acetylcysteine extends lifespan of Drosophila via modulating ROS scavenger gene expression. Biogerontology 20(4):533–543. https://doi.org/10.1007/s10522-019-09815-4

    CAS  Article  PubMed  Google Scholar 

  67. Oh SI, Park JK, Park SK (2015) Lifespan extension and increased resistance to environmental stressors by N-acetyl-l-cysteine in Caenorhabditis elegans. Clinics (Sao Paulo) 70(5):380–386. https://doi.org/10.6061/clinics/2015(05)13

    Article  Google Scholar 

  68. Ooms J (2021) magick: advanced graphics and image-processing in R. R package version 2.7.3. https://CRAN.R-project.org/package=magick

  69. Petrascheck M, Ye X, Buck LB (2007) An antidepressant that extends lifespan in adult Caenorhabditis elegans. Nature 450(7169):553–556. https://doi.org/10.1038/nature05991

    CAS  Article  PubMed  Google Scholar 

  70. Pickering AM, Lehr M, Miller RA (2015) Lifespan of mice and primates correlates with immunoproteasome expression. J Clin Invest 125(5):2059–2068. https://doi.org/10.1172/JCI80514

    Article  PubMed  PubMed Central  Google Scholar 

  71. Pietrocola F, Castoldi F, Maiuri MC, Kroemer G (2018a) Aspirin-another caloric-restriction mimetic. Autophagy 14(7):1162–1163. https://doi.org/10.1080/15548627.2018.1454810

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. Pietrocola F, Castoldi F, Markaki M, Lachkar S, Chen G, Enot DP, Durand S, Bossut N, Tong M, Malik SA, Loos F, Dupont N, Mariño G, Abdelkader N, Madeo F, Maiuri MC, Kroemer R, Codogno P, Sadoshima J, Tavernarakis N, Kroemer G (2018b) Aspirin recapitulates features of caloric restriction. Cell Rep 22(9):2395–2407. https://doi.org/10.1016/j.celrep.2018.02.024

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. Pietsch K, Saul N, Swain SC, Menzel R, Steinberg CE, Stürzenbaum SR (2012) Meta-analysis of global transcriptomics suggests that conserved genetic pathways are responsible for quercetin and tannic acid mediated longevity in C. elegans. Front Genet 3:48. https://doi.org/10.3389/fgene.2012.00048

    Article  PubMed  PubMed Central  Google Scholar 

  74. Poeggeler B, Sambamurti K, Siedlak SL, Perry G, Smith MA, Pappolla MA (2010) A novel endogenous indole protects rodent mitochondria and extends rotifer lifespan. PLoS ONE 5(4):e10206. https://doi.org/10.1371/journal.pone.0010206

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. Proshkina E, Lashmanova E, Dobrovolskaya E, Zemskaya N, Kudryavtseva A, Shaposhnikov M, Moskalev A (2016) Geroprotective and radioprotective activity of quercetin, (-)-epicatechin, and ibuprofen in Drosophila melanogaster. Front Pharmacol 7:505. https://doi.org/10.3389/fphar.2016.00505

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  77. Rasmussen EMK, Seier KL, Pedersen IK, Kreibich C, Amdam GV, Münch D, Dahl JA (2021) Screening bioactive food compounds in honey bees suggests curcumin blocks alcohol-induced damage to longevity and DNA methylation. Sci Rep 11(1):19156. https://doi.org/10.1038/s41598-021-98614-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  78. Rattan SIS (2018) Biogerontology: research status, challenges and opportunities. Acta Biomed 89(2):291–301. https://doi.org/10.23750/abm.v89i2.7403

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  79. Rattan SIS (2020) Naive extrapolations, overhyped claims and empty promises in ageing research and interventions need avoidance. Biogerontology 21(4):415–421. https://doi.org/10.1007/s10522-019-09851-0

    Article  PubMed  Google Scholar 

  80. Rattan SI, Demirovic D (2009) Hormesis can and does work in humans. Dose Response 8(1):58–63. https://doi.org/10.2203/dose-response.09-041.Rattan

    Article  PubMed  PubMed Central  Google Scholar 

  81. Richie JP Jr, Mills BJ, Lang CA (1986) Dietary nordihydroguaiaretic acid increases the life span of the mosquito. Proc Soc Exp Biol Med 183(1):81–85. https://doi.org/10.3181/00379727-183-42389

    CAS  Article  PubMed  Google Scholar 

  82. Ro SH, Nam M, Jang I, Park HW, Park H, Semple IA, Kim M, Kim JS, Park H, Einat P, Damari G, Golikov M, Feinstein E, Lee JH (2014) Sestrin2 inhibits uncoupling protein 1 expression through suppressing reactive oxygen species. Proc Natl Acad Sci USA 111(21):7849–7854. https://doi.org/10.1073/pnas.1401787111

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  83. Rost-Roszkowska MM, Poprawa I, Chachulska-Zymełka A (2010) Apoptosis and autophagy in the midgut epithelium of Acheta domesticus (Insecta, Orthoptera, Gryllidae). Zool Sci 27(9):740–745. https://doi.org/10.2108/zsj.27.740

    Article  Google Scholar 

  84. Sadagurski M, Cady G, Miller RA (2017) Anti-aging drugs reduce hypothalamic inflammation in a sex-specific manner. Aging Cell 16(4):652–660. https://doi.org/10.1111/acel.12590

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  85. Sakamoto T, Maebayashi K, Tsunoda Y, Imai H (2020) Inhibition of lipid peroxidation during the reproductive period extends the lifespan of Caenorhabditis elegans. J Clin Biochem Nutr 66(2):116–123. https://doi.org/10.3164/jcbn.19-51

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  86. Sampayo JN, Olsen A, Lithgow GJ (2003) Oxidative stress in Caenorhabditis elegans: protective effects of superoxide dismutase/catalase mimetics. Aging Cell 2(6):319–326. https://doi.org/10.1046/j.1474-9728.2003.00063.x

    CAS  Article  PubMed  Google Scholar 

  87. Saul N, Pietsch K, Menzel R, Stürzenbaum SR, Steinberg CE (2010) The longevity effect of tannic acid in Caenorhabditis elegans: disposable soma meets hormesis. J Gerontol A 65(6):626–635. https://doi.org/10.1093/gerona/glq051

    CAS  Article  Google Scholar 

  88. Saul N, Pietsch K, Stürzenbaum SR, Menzel R, Steinberg CE (2011) Diversity of polyphenol action in Caenorhabditis elegans: between toxicity and longevity. J Nat Prod 74(8):1713–1720. https://doi.org/10.1021/np200011a

    CAS  Article  PubMed  Google Scholar 

  89. Savion N, Levine A, Kotev-Emeth S, Bening Abu-Shach U, Broday L (2018) S-allylmercapto-N-acetylcysteine protects against oxidative stress and extends lifespan in Caenorhabditis elegans. PLoS ONE 13(3):e0194780. https://doi.org/10.1371/journal.pone.0194780

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  90. Saxton RA, Sabatini DM (2017) mTOR signaling in growth, metabolism, and disease. Cell 169(2):361–371. https://doi.org/10.1016/j.cell.2017.03.035. Erratum for: Cell 2017;168(6):960–976

  91. Schlotterer A, Masri B, Humpert M, Krämer BK, Hammes HP, Morcos M (2020) Sulforaphane and vitamin E protect from glucotoxic neurodegeneration and lifespan reduction in C. elegans. Exp Clin Endocrinol Diabetes. https://doi.org/10.1055/a-1158-9248

    Article  PubMed  Google Scholar 

  92. Seong KM, Yu M, Lee KS, Park S, Jin YW, Min KJ (2015) Curcumin mitigates accelerated aging after irradiation in Drosophila by reducing oxidative stress. Biomed Res Int 2015:425380. https://doi.org/10.1155/2015/425380

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  93. Shen B, Truong J, Helliwell R, Govindaraghavan S, Sucher NJ (2013) An in vitro study of neuroprotective properties of traditional Chinese herbal medicines thought to promote healthy ageing and longevity. BMC Complement Altern Med 13:373. https://doi.org/10.1186/1472-6882-13-373

    Article  PubMed  PubMed Central  Google Scholar 

  94. Shintani T, Sakoguchi H, Yoshihara A, Izumori K, Sato M (2019) d-Allose, a stereoisomer of d-glucose, extends the lifespan of Caenorhabditis elegans via sirtuin and insulin signaling. J Appl Glycosci 66(4):139–142. https://doi.org/10.5458/jag.jag.JAG-2019_0010

    CAS  Article  Google Scholar 

  95. Snare DJ, Fields AM, Snell TW, Kubanek J (2013) Lifespan extension of rotifers by treatment with red algal extracts. Exp Gerontol 48(12):1420–1427. https://doi.org/10.1016/j.exger.2013.09.007

    Article  PubMed  Google Scholar 

  96. Snell TW (2014) Rotifers as models for the biology of aging. Int Rev Hydrobiol 99(1–2):84–95. https://doi.org/10.1002/iroh.201301707

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  97. Snell TW, Johnston RK, Gribble KE, Mark Welch DB (2015) Rotifers as experimental tools for investigating aging. Invertebr Reprod Dev 59(1):5–10. https://doi.org/10.1080/07924259.2014.925516

    CAS  Article  PubMed  Google Scholar 

  98. Solis GM, Kardakaris R, Valentine ER, Bar-Peled L, Chen AL, Blewett MM, McCormick MA, Williamson JR, Kennedy B, Cravatt BF, Petrascheck M (2018) Translation attenuation by minocycline enhances longevity and proteostasis in old post-stress-responsive organisms. Elife 7:e40314. https://doi.org/10.7554/eLife.40314

    Article  PubMed  PubMed Central  Google Scholar 

  99. Song C, Zhu C, Wu Q, Qi J, Gao Y, Zhang Z, Gaur U, Yang D, Fan X, Yang M (2017) Metabolome analysis of effect of aspirin on Drosophila lifespan extension. Exp Gerontol 95:54–62. https://doi.org/10.1016/j.exger.2017.04.010

    CAS  Article  PubMed  Google Scholar 

  100. Spindler SR, Mote PL, Lublin AL, Flegal JM, Dhahbi JM, Li R (2015) Nordihydroguaiaretic acid extends the lifespan of drosophila and mice, increases mortality-related tumors and hemorrhagic diathesis, and alters energy homeostasis in mice. J Gerontol A 70(12):1479–1489. https://doi.org/10.1093/gerona/glu190

    CAS  Article  Google Scholar 

  101. Stohs SJ, Lawson TA, Anderson L, Bueding E (1986) Effects of oltipraz, BHA, ADT and cabbage on glutathione metabolism, DNA damage and lipid peroxidation in old mice. Mech Ageing Dev 37(2):137–145. https://doi.org/10.1016/0047-6374(86)90071-0

    CAS  Article  PubMed  Google Scholar 

  102. Stroustrup N, Ulmschneider BE, Nash ZM, López-Moyado IF, Apfeld J, Fontana W (2013) The Caenorhabditis elegans lifespan machine. Nat Methods 10(7):665–670. https://doi.org/10.1038/nmeth.2475

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  103. Sutphin GL, Bishop E, Yanos ME, Moller RM, Kaeberlein M (2012) Caffeine extends life span, improves healthspan, and delays age-associated pathology in Caenorhabditis elegans. Longev Healthspan 1:9. https://doi.org/10.1186/2046-2395-1-9

    Article  PubMed  PubMed Central  Google Scholar 

  104. Tacutu R, Thornton D, Johnson E, Budovsky A, Barardo D, Craig T, Diana E, Lehmann G, Toren D, Wang J, Fraifeld VE, de Magalhães JP (2018) Human ageing genomic resources: new and updated databases. Nucleic Acids Res 46(D1):D1083–D1090. https://doi.org/10.1093/nar/gkx1042

    CAS  Article  PubMed  Google Scholar 

  105. Taormina G, Ferrante F, Vieni S, Grassi N, Russo A, Mirisola MG (2019) Longevity: lesson from model organisms. Genes (Basel) 10(7):518. https://doi.org/10.3390/genes10070518

    CAS  Article  Google Scholar 

  106. Tezil T, Chamoli M, Ng CP, Simon RP, Butler VJ, Jung M, Andersen J, Kao AW, Verdin E (2019) Lifespan-increasing drug nordihydroguaiaretic acid inhibits p300 and activates autophagy. NPJ Aging Mech Dis 5:7. https://doi.org/10.1038/s41514-019-0037-7

    Article  PubMed  PubMed Central  Google Scholar 

  107. Varghese N, Werner S, Grimm A, Eckert A (2020) Dietary mitophagy enhancer: a strategy for healthy brain aging? Antioxidants (Basel) 9(10):932. https://doi.org/10.3390/antiox9100932

    CAS  Article  Google Scholar 

  108. Vilchez D, Saez I, Dillin A (2014) The role of protein clearance mechanisms in organismal ageing and age-related diseases. Nat Commun 5:5659. https://doi.org/10.1038/ncomms6659

    CAS  Article  PubMed  Google Scholar 

  109. Wadhwa R, Sharma SP (1987) Studies on catalase in ageing Zaprionus paravittiger (Diptera) with special reference to an antioxidant feeding. Mech Ageing Dev 40(2):139–147. https://doi.org/10.1016/0047-6374(87)90013-3

    CAS  Article  PubMed  Google Scholar 

  110. Wadhwa R, Kaur M, Sharma SP (1988) An antioxidant induced alterations in peroxidase activity in ageing Zaprionus paravittiger (Diptera). Mech Ageing Dev 45(3):277–283. https://doi.org/10.1016/0047-6374(88)90008-5

    CAS  Article  PubMed  Google Scholar 

  111. Wan QL, Zheng SQ, Wu GS, Luo HR (2013) Aspirin extends the lifespan of Caenorhabditis elegans via AMPK and DAF-16/FOXO in dietary restriction pathway. Exp Gerontol 48(5):499–506. https://doi.org/10.1016/j.exger.2013.02.020

    CAS  Article  PubMed  Google Scholar 

  112. Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer-Verlag, New York

    Book  Google Scholar 

  113. Wickham H (2019) stringr: simple, consistent wrappers for common string operations. R package version 1.4.0. https://CRAN.R-project.org/package=stringr

  114. Wickham H (2021a) tidyr: tidy messy data. R package version 1.1.3. https://CRAN.R-project.org/package=tidyr

  115. Wickham H (2021b) forcats: tools for working with categorical variables (factors). R package version 0.5.1. https://CRAN.R-project.org/package=forcats

  116. Wickham H, Bryan J (2019) readxl: read excel files. R package version 1.3.1. https://CRAN.R-project.org/package=readxl

  117. Wickham H, Hester J (2021) readr: read rectangular text data. R package version 2.0.1. https://CRAN.R-project.org/package=readr

  118. Wickham H et al (2019) Welcome to the tidyverse. J Open Source Softw 4(43):1686. https://doi.org/10.21105/joss.01686

    Article  Google Scholar 

  119. Wickham H, François R, Henry L, Müller K (2021) dplyr: a grammar of data manipulation. R package version 1.0.7. https://CRAN.R-project.org/package=dplyr

  120. Wiegant FA, Surinova S, Ytsma E, Langelaar-Makkinje M, Wikman G, Post JA (2009) Plant adaptogens increase lifespan and stress resistance in C. elegans. Biogerontology 10(1):27–42. https://doi.org/10.1007/s10522-008-9151-9

    CAS  Article  PubMed  Google Scholar 

  121. Wilke CO (2021) ggridges: ridgeline plots in ‘ggplot2’. R package version 0.5.3. https://CRAN.R-project.org/package=ggridges

  122. Wu LH, Huang BR, Lai SW, Lin C, Lin HY, Yang LY, Lu DY (2020) SIRT1 activation by minocycline on regulation of microglial polarization homeostasis. Aging (Albany NY) 12(18):17990–18007. https://doi.org/10.18632/aging.103542

    CAS  Article  Google Scholar 

  123. Xie Y (2021) knitr: a general-purpose package for dynamic report generation in R. R package version 1.33

  124. Xie Y, Dervieux C, Riederer E (2020) R Markdown Cookbook. Chapman and Hall/CRC. ISBN 9780367563837. https://bookdown.org/yihui/rmarkdown-cookbook

  125. Ye X, Linton JM, Schork NJ, Buck LB, Petrascheck M (2014) A pharmacological network for lifespan extension in Caenorhabditis elegans. Aging Cell 13(2):206–215. https://doi.org/10.1111/acel.12163

    CAS  Article  PubMed  Google Scholar 

  126. Yessenkyzy A, Saliev T, Zhanaliyeva M, Masoud AR, Umbayev B, Sergazy S, Krivykh E, Gulyayev A, Nurgozhin T (2020) Polyphenols as caloric-restriction mimetics and autophagy inducers in aging research. Nutrients 12(5):1344. https://doi.org/10.3390/nu12051344

    CAS  Article  PubMed Central  Google Scholar 

  127. Zia A, Farkhondeh T, Pourbagher-Shahri AM, Samarghandian S (2021) The role of curcumin in aging and senescence: molecular mechanisms. Biomed Pharmacother 134:111119. https://doi.org/10.1016/j.biopha.2020.111119

    CAS  Article  PubMed  Google Scholar 

Download references

Funding

CB is funded by TUBITAK (The Scientific and Technological Research Council of Turkey) 2211-E program.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Caglar Berkel or Ercan Cacan.

Ethics declarations

Conflict of interest

Authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Berkel, C., Cacan, E. A collective analysis of lifespan-extending compounds in diverse model organisms, and of species whose lifespan can be extended the most by the application of compounds. Biogerontology 22, 639–653 (2021). https://doi.org/10.1007/s10522-021-09941-y

Download citation

Keywords

  • Aging
  • Caenorhabditis elegans
  • Drosophila melanogaster
  • Lifespan
  • Minocycline
  • Model organisms
  • Philodina acuticornis