Skip to main content

Application of lipidomics strategy to explore aging-related biomarkers and potential anti-aging mechanisms of ginseng

Abstract

Aging often leads to an increase risk of age-related diseases, and the development of anti-aging drugs have become the trend and focus of the current scientific research. In this experiment, serum samples from healthy people of different ages were analyzed based on clinical lipidomics, and a total of 10 potential biomarkers in middle-aged and youth group, 20 biomarkers in the youth and the elderly group were obtained. Furthermore, dhSph and dhCer involved above may affect the aging process through sphingolipid metabolic pathway. As the first and rate-limiting step of catalyzing de novo sphingolipid pathway, SPT may play a key role in human anti-aging, which is revealed by lipidomics liposome tracer analysis. The potential active components in ginseng on SPT was further verified by molecular docking virtual screening and atomic force microscope. Four ingredients of ginseng may reduce the levels of metabolites dhSph and dhCer by inhibiting the activity of SPT, and play an anti-aging effect by affecting the sphingolipid metabolism pathway.

A clinical trials registration number: ChiCTR1900026836.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

All data generated or analysed during this study are included in this published article and its supplementary information files.

References

  1. Adebiyi OE, Olopade JO, Olayemi FO (2018) Sodium metavanadate induced cognitive decline, behavioral impairments, oxidative stress and down regulation of myelin basic protein in mice hippocampus: ameliorative roles of β-spinasterol, and stigmasterol. Brain Behav 8:e1014

    Article  Google Scholar 

  2. Almeida I, Magalhães S, Nunes A (2021) Lipids: biomarkers of healthy aging. Biogerontology 22:273–295

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. Bayeva M, Gheorghiade M, Ardehali H (2013) Mitochondria as a therapeutic target in heart failure. J Am Coll Cardiol 61:599–610

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. Da CJ, Vitorino R, Silva GM et al (2016) A synopsis on aging-theories, mechanisms and future prospects. Ageing Res Rev 29:90–112

    Article  Google Scholar 

  5. Espín JC, García-Conesa MT, Tomás-Barberán FA (2007) Nutraceuticals: facts and fiction. Phytochemistry 68:2986–3008

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  6. Feng S, Dai Z, Liu AB et al (2018) Intake of stigmasterol and β-sitosterol alters lipid metabolism and alleviates NAFLD in mice fed a high-fat western-style diet. Biochim Biophys Acta Mol Cell Biol Lipids 1863:1274–1284

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. Ferrando-Martinez S, Ruiz-Mateos E, Hernandez A et al (2011) Age-related deregulation of naive T cell homeostasis in elderly humans. Age (dordr) 33:197–207

    CAS  Article  Google Scholar 

  8. Gault CR, Obeid LM, Hannun YA (2010) An overview of sphingolipid metabolism: from synthesis to breakdown. Adv Exp Med Biol 688:1–23

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. Hannun YA, Obeid LM (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9:139–150

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  10. Hannun YA, Obeid LM (2011) Many ceramides. J Biol Chem 286:27855–27862

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. Hornemann T, Richard S, Rütti MF et al (2006) Cloning and initial characterization of a new subunit for mammalian serine-palmitoyltransferase. J Biol Chem 281:37275–37281

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. Hornemann T, Penno A, Rütti MF et al (2009) The SPTLC3 subunit of serine palmitoyltransferase generates short chain sphingoid bases. J Biol Chem 284:26322–26330

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. Huang X, Withers BR, Dickson RC (2014) Sphingolipids and lifespan regulation. Biochim Biophys Acta 1841:657–664

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. Huynh K, Barlow CK, Jayawardana KS et al (2019) High-throughput plasma lipidomics: detailed mapping of the associations with cardiometabolic risk factors. Cell Chem Biol 26:71–84

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. Illig T, Gieger C, Zhai G et al (2010) A genome-wide perspective of genetic variation in human metabolism. Nat Genet 42:137–141

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. Johnson AA, Stolzing A (2019) The role of lipid metabolism in aging, lifespan regulation, and age-related disease. Aging Cell 18:e13048

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. Kanasi E, Ayilavarapu S, Jones J (2016) The aging population: demographics and the biology of aging. Periodontol 2000 72:13–18

    PubMed  Article  PubMed Central  Google Scholar 

  18. Kritsilis M, Rizou SV, Koutsoudaki PN et al (2018) Ageing, cellular senescence and neurodegenerative disease. Int J Mol Sci 19:2937

    PubMed Central  Article  CAS  Google Scholar 

  19. Lee H, Hong Y, Tran Q et al (2019a) A new role for the ginsenoside RG3 in antiaging via mitochondria function in ultraviolet-irradiated human dermal fibroblasts. J Ginseng Res 43:431–441

    PubMed  Article  PubMed Central  Google Scholar 

  20. Lee SH, Lee HY, Yu M et al (2019b) Extension of Drosophila lifespan by Korean red ginseng through a mechanism dependent on dSir2 and insulin/IGF-1 signaling. Aging (albany NY) 11:9369–9387

    CAS  Article  Google Scholar 

  21. Lemaitre RN, King IB, Kabagambe EK et al (2015) Genetic loci associated with circulating levels of very long-chain saturated fatty acids. J Lipid Res 56:176–184

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. Liang X, Yao Y, Lin Y et al (2019) Panaxadiol inhibits synaptic dysfunction in Alzheimer’s disease and targets the Fyn protein in APP/PS1 mice and APP-SH-SY5Y cells. Life Sci 221:35–46

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. López-Otín C, Blasco MA, Partridge L et al (2013) The hallmarks of aging. Cell 153:1194–1217

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  24. Magaye RR, Savira F, Hua Y et al (2019) The role of dihydrosphingolipids in disease. Cell Mol Life Sci 76:1107–1134

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. Mielke MM, Bandaru VV, Han D et al (2015) Factors affecting longitudinal trajectories of plasma sphingomyelins: the Baltimore Longitudinal Study of Aging. Aging Cell 14:112–121

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. Mirkov S, Myers JL, Ramírez J et al (2012) SNPs affecting serum metabolomic traits may regulate gene transcription and lipid accumulation in the liver. Metabolism 61:1523–1527

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. Montoliu I, Scherer M, Beguelin F et al (2014) Serum profiling of healthy aging identifies phospho- and sphingolipid species as markers of human longevity. Aging (albany NY) 6:9–25

    CAS  Article  Google Scholar 

  28. Ordoñez R, Fernández A, Prieto-Domínguez N et al (2015) Ceramide metabolism regulates autophagy and apoptotic cell death induced by melatonin in liver cancer cells. J Pineal Res 59:178–189

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  29. Papsdorf K, Brunet A (2019) Linking lipid metabolism to chromatin regulation in aging. Trends Cell Biol 29:97–116

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. Park HJ, Kim DH, Park SJ et al (2012) Ginseng in traditional herbal prescriptions. J Ginseng Res 36:225–241

    PubMed  PubMed Central  Article  Google Scholar 

  31. Patel S, Rauf A (2017) Adaptogenic herb ginseng (Panax) as medical food: Status quo and future prospects. Biomed Pharmacother 85:120–127

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. Pi J, Cai J (2019) Cell topography and its quantitative imaging by AFM. Methods Mol Biol 1886:99–113

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. Rizza S, Copetti M, Rossi C et al (2014) Metabolomics signature improves the prediction of cardiovascular events in elderly subjects. Atherosclerosis 232:260–264

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. Sampey BP, Freemerman AJ, Zhang J et al (2012) Metabolomic profiling reveals mitochondrial-derived lipid biomarkers that drive obesity-associated inflammation. PLoS ONE 7:e38812

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Shin KK, Yi YS, Kim JK et al (2020) Korean red ginseng plays an anti-aging role by modulating expression of aging-related genes and immune cell subsets. Molecules 25:1492

    CAS  PubMed Central  Article  Google Scholar 

  36. Stahl EC, Haschak MJ, Popovic B et al (2018) Macrophages in the aging liver and age-related liver disease. Front Immunol 9:2795

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  37. Ussher JR, Folmes CD, Keung W et al (2012) Inhibition of serine palmitoyl transferase I reduces cardiac ceramide levels and increases glycolysis rates following diet-induced insulin resistance. PLoS ONE 7:e37703

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. Wang JC, Bennett M (2012) Aging and atherosclerosis: mechanisms, functional consequences, and potential therapeutics for cellular senescence. Circ Res 111:245–259

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. Wang M, Li H, Liu W et al (2020) Dammarane-type leads panaxadiol and protopanaxadiol for drug discovery: biological activity and structural modification. Eur J Med Chem 189:112087

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  40. Wang Y, Wu J, Zhu J et al (2021) Ginsenosides regulation of lysophosphatidylcholine profiles underlies the mechanism of Shengmai Yin in attenuating atherosclerosis. J Ethnopharmacol 277:114223

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. Yao X, Jiang H, Li YH et al (2019) Kaempferol alleviates the reduction of developmental competence during aging of porcine oocytes. Anim Sci J 90:1417–1425

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. Zhu J, Mu X, Zeng J et al (2014) Ginsenoside Rg1 prevents cognitive impairment and hippocampus senescence in a rat model of D-galactose-induced aging. PLoS ONE 9:e101291

    PubMed  PubMed Central  Article  CAS  Google Scholar 

Download references

Funding

This work was funded by High-level Innovation Team of Tianjin Talent Development Special Support Program. The National Natural Science Foundation of China (No. 81903933) and the National Natural Science Foundation of China (No. 81873194).

Author information

Affiliations

Authors

Contributions

HS, YL and SY contributed to the conception of the study; SY, YD, YL and XY performed the experiment; SY, YD, YL performed the data analyses and wrote the manuscript; GS, GJ, XL, Hui Liu helped perform the analysis with constructive discussions.

Corresponding authors

Correspondence to Haihua Su or Yubo Li.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship, and publication of this article.

Ethical approval

This experiment is registered in the China Clinical Trials Registry.

Informed consent

Informed consent was obtained from all individual participants included in the study. Consent for publication The participant has consented to the submission of the case report to the journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 5276 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Dong, Y., Liu, Y. et al. Application of lipidomics strategy to explore aging-related biomarkers and potential anti-aging mechanisms of ginseng. Biogerontology (2021). https://doi.org/10.1007/s10522-021-09937-8

Download citation

Keywords

  • Lipidomics
  • Sphingolipid metabolism
  • Aging
  • SPT
  • Ginseng