Skip to main content

Perspectives on the dynamic implications of cellular senescence and immunosenescence on macrophage aging biology

Abstract

An intricate relationship between impaired immune functions and the age-related accumulation of tissue senescent cells is rapidly emerging. The immune system is unique as it undergoes mutually inclusive and deleterious processes of immunosenescence and cellular senescence with advancing age. While factors inducing immunosenescence and cellular senescence may be shared, however, both these processes are fundamentally different which holistically influence the aging immune system. Our understanding of the biological impact of immunosenescence is relatively well-understood, but such knowledge regarding cellular senescence in immune cells, especially in the innate immune cells such as macrophages, is only beginning to be elucidated. Tissue-resident macrophages are long-lived, and while functioning in tissue-specific and niche-specific microenvironments, senescence in macrophages can be directly influenced by senescent host cells which may impact organismal aging. In addition, evidence of age-associated immunometabolic changes as drivers of altered macrophage phenotype and functions such as inflamm-aging is also emerging. The present review describes the emerging impact of cellular senescence vis-à-vis immunosenescence in aging macrophages, its biological relevance with other senescent non-immune cells, and known immunometabolic regulators. Gaps in our present knowledge, as well as strategies aimed at understanding cellular senescence and its therapeutics in the context of macrophages, have been reviewed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

SC:

Senescent cells

SASP:

Senescence-associated secretory phenotype

SA-β-gal:

Senescence-associated β-galactosidase

mTOR:

Mammalian target of rapamycin

ROS:

Reactive oxygen species

NAD+ :

Nicotinamide adenine dinucleotide

MDSC:

Myeloid-derived suppressor cells

References

  1. Aiello A, Farzaneh F, Candore G, Caruso C, Davinelli S, Gambino CM, Ligotti ME, Zareian N, Accardi G (2019) Immunosenescence and its hallmarks: how to oppose aging strategically? A review of potential options for therapeutic intervention. Front Immunol. https://doi.org/10.3389/fimmu.2019.02247

    Article  PubMed  PubMed Central  Google Scholar 

  2. Aw D, Silva AB, Palmer DB (2007) Immunosenescence: emerging challenges for an ageing population. Immunology 120(4):435–446. https://doi.org/10.1111/j.1365-2567.2007.02555.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Bain CC, Hawley CA, Garner H, Scott CL, Schridde A, Steers NJ, Mack M, Joshi A, Guilliams M, Mowat AM et al (2016) Long-lived self-renewing bone marrow-derived macrophages displace embryo-derived cells to inhabit adult serous cavities. Nat Commun 7:ncomms11852. https://doi.org/10.1038/ncomms11852

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B, Kirkland JL, van Deursen JM (2011) Clearance of p16ink4a-positive senescent cells delays ageing-associated disorders. Nature 479(7372):232–236. https://doi.org/10.1038/nature10600

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, Zhong J, Saltness RA, Jeganathan KB, Verzosa GC, Pezeshki A et al (2016) Naturally occurring p16(ink4a)-positive cells shorten healthy lifespan. Nature 530(7589):184–189. https://doi.org/10.1038/nature16932

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Becker L, Nguyen L, Gill J, Kulkarni S, Pasricha PJ, Habtezion A (2018) Age-dependent shift in macrophage polarisation causes inflammation-mediated degeneration of enteric nervous system. Gut 67(5):827–836. https://doi.org/10.1136/gutjnl-2016-312940

    CAS  Article  PubMed  Google Scholar 

  7. Bhatia-Dey N, Kanherkar RR, Stair SE, Makarev EO, Csoka AB (2016) Cellular senescence as the causal nexus of aging. Front Genet 7:13–13. https://doi.org/10.3389/fgene.2016.00013

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Borghesan M, Hoogaars WMH, Varela-Eirin M, Talma N, Demaria M (2020) A senescence-centric view of aging: implications for longevity and disease. Trends Cell Biol 30(10):777–791. https://doi.org/10.1016/j.tcb.2020.07.002

    CAS  Article  PubMed  Google Scholar 

  9. Burton DGA, Stolzing A (2018) Cellular senescence: immunosurveillance and future immunotherapy. Ageing Res Rev 43:17–25. https://doi.org/10.1016/j.arr.2018.02.001

    CAS  Article  PubMed  Google Scholar 

  10. Cai Y, Zhou H, Zhu Y, Sun Q, Ji Y, Xue A, Wang Y, Chen W, Yu X, Wang L et al (2020) Elimination of senescent cells by β-galactosidase-targeted prodrug attenuates inflammation and restores physical function in aged mice. Cell Res 30(7):574–589. https://doi.org/10.1038/s41422-020-0314-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Campisi J, Robert L (2014) Cell senescence: role in aging and age-related diseases. Interdiscip Top Gerontol 39:45–61. https://doi.org/10.1159/000358899

    Article  PubMed  PubMed Central  Google Scholar 

  12. Carroll B, Korolchuk VI (2018) Nutrient sensing, growth and senescence. FEBS J 285(11):1948–1958. https://doi.org/10.1111/febs.14400

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Chandrasekaran A, Idelchik MdPS, Melendez JA (2017) Redox control of senescence and age-related disease. Redox Biol 11:91–102. https://doi.org/10.1016/j.redox.2016.11.005

    CAS  Article  PubMed  Google Scholar 

  14. Chelvarajan RL, Liu Y, Popa D, Getchell ML, Getchell TV, Stromberg AJ, Bondada S (2006) Molecular basis of age-associated cytokine dysregulation in lps-stimulated macrophages. J Leukoc Biol 79(6):1314–1327. https://doi.org/10.1189/jlb.0106024

    CAS  Article  PubMed  Google Scholar 

  15. Chen K, Shen W, Zhang Z, Xiong F, Ouyang Q, Luo C (2020) Age-dependent decline in stress response capacity revealed by proteins dynamics analysis. Sci Rep 10(1):15211. https://doi.org/10.1038/s41598-020-72167-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Childs BG, Durik M, Baker DJ, van Deursen JM (2015) Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med 21(12):1424–1435. https://doi.org/10.1038/nm.4000

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Chou JP, Effros RB (2013) T cell replicative senescence in human aging. Curr Pharm Des 19(9):1680–1698. https://doi.org/10.2174/138161213805219711

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Chung EJ, Kwon S, Reedy JL, White AO, Song JS, Hwang I, Chung JY, Ylaya K, Hewitt SM, Citrin DE (2020) Igf-1 receptor signaling regulates type II pneumocyte senescence and resulting macrophage polarization in lung fibrosis. Int J Radiat Oncol Biol Phys. https://doi.org/10.1016/j.ijrobp.2020.12.035

    Article  PubMed  Google Scholar 

  19. Colella MP, Santana BA, Conran N, Tomazini V, Costa FF, Calado RT, Saad STO (2017) Telomere length correlates with disease severity and inflammation in sickle cell disease. Rev Bras Hematol Hemoter 39(2):140–145. https://doi.org/10.1016/j.bjhh.2017.02.007

    Article  PubMed  PubMed Central  Google Scholar 

  20. Coppé JP, Desprez PY, Krtolica A, Campisi J (2010) The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5:99–118. https://doi.org/10.1146/annurev-pathol-121808-102144

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Covarrubias AJ, Kale A, Perrone R, Lopez-Dominguez JA, Pisco AO, Kasler HG, Schmidt MS, Heckenbach I, Kwok R, Wiley CD et al (2020) Senescent cells promote tissue nad(+) decline during ageing via the activation of cd38(+) macrophages. Nat Metab 2(11):1265–1283. https://doi.org/10.1038/s42255-020-00305-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Covre LP, De Maeyer RPH, Gomes DCO, Akbar AN (2020) The role of senescent t cells in immunopathology. Aging Cell 19(12):e13272. https://doi.org/10.1111/acel.13272

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Cui C-Y, Driscoll RK, Piao Y, Chia CW, Gorospe M, Ferrucci L (2019) Skewed macrophage polarization in aging skeletal muscle. Aging Cell 18(6):e13032. https://doi.org/10.1111/acel.13032

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Danon D, Kowatch MA, Roth GS (1989) Promotion of wound repair in old mice by local injection of macrophages. Proc Natl Acad Sci USA 86(6):2018–2020. https://doi.org/10.1073/pnas.86.6.2018

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Davila DR, Edwards 3rd CK, Arkins S, Simon J, Kelley KW (1990) Interferon-gamma-induced priming for secretion of superoxide anion and tumor necrosis factor-alpha declines in macrophages from aged rats. FASEB J 4(11):2906–2911. https://doi.org/10.1096/fasebj.4.11.2165948

    CAS  Article  PubMed  Google Scholar 

  26. de Magalhães JP (2004) From cells to ageing: a review of models and mechanisms of cellular senescence and their impact on human ageing. Exp Cell Res 300(1):1–10. https://doi.org/10.1016/j.yexcr.2004.07.006

    CAS  Article  PubMed  Google Scholar 

  27. Del Giudice G, Goronzy JJ, Grubeck-Loebenstein B, Lambert P-H, Mrkvan T, Stoddard JJ, Doherty TM (2017) Fighting against a protean enemy: immunosenescence, vaccines, and healthy aging. NPJ Aging Mech Dis 4(1):1. https://doi.org/10.1038/s41514-017-0020-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Demaria M, Ohtani N, Youssef SA, Rodier F, Toussaint W, Mitchell JR, Laberge R-M, Vijg J, Van Steeg H, Dollé MET et al (2014) An essential role for senescent cells in optimal wound healing through secretion of pdgf-aa. Dev Cell 31(6):722–733. https://doi.org/10.1016/j.devcel.2014.11.012

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. DeSantis CE, Miller KD, Dale W, Mohile SG, Cohen HJ, Leach CR, Goding Sauer A, Jemal A, Siegel RL (2019) Cancer statistics for adults aged 85 years and older, 2019. CA Cancer J Clin 69(6):452–467. https://doi.org/10.3322/caac.21577

    Article  PubMed  Google Scholar 

  30. Ding A, Hwang S, Schwab R (1994) Effect of aging on murine macrophages. Diminished response to ifn-gamma for enhanced oxidative metabolism. J Immunol 153(5):2146–2152

    CAS  PubMed  Google Scholar 

  31. Dodig S, Čepelak I, Pavić I (2019) Hallmarks of senescence and aging. Biochem Med 29(3):030501–030501. https://doi.org/10.11613/BM.2019.030501

    Article  Google Scholar 

  32. Duong L, Radley HG, Lee B, Dye DE, Pixley FJ, Grounds MD, Nelson DJ, Jackaman C (2021) Macrophage function in the elderly and impact on injury repair and cancer. Immun Ageing 18(1):4. https://doi.org/10.1186/s12979-021-00215-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Effros RB (2004) From Hayflick to Walford: the role of t cell replicative senescence in human aging. Exp Gerontol 39(6):885–890. https://doi.org/10.1016/j.exger.2004.03.004

    CAS  Article  PubMed  Google Scholar 

  34. Egashira M, Hirota Y, Shimizu-Hirota R, Saito-Fujita T, Haraguchi H, Matsumoto L, Matsuo M, Hiraoka T, Tanaka T, Akaeda S et al (2017) F4/80 + macrophages contribute to clearance of senescent cells in the mouse postpartum uterus. Endocrinology 158(7):2344–2353. https://doi.org/10.1210/en.2016-1886

    CAS  Article  PubMed  Google Scholar 

  35. Enioutina EY, Bareyan D, Daynes RA (2011) A role for immature myeloid cells in immune senescence. J Immunol 186(2):697. https://doi.org/10.4049/jimmunol.1002987

    CAS  Article  PubMed  Google Scholar 

  36. Flores RR, Clauson CL, Cho J, Lee BC, McGowan SJ, Baker DJ, Niedernhofer LJ, Robbins PD (2017) Expansion of myeloid-derived suppressor cells with aging in the bone marrow of mice through a nf-κb-dependent mechanism. Aging Cell 16(3):480–487. https://doi.org/10.1111/acel.12571

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Flowers A, Bell-Temin H, Jalloh A, Stevens SM Jr, Bickford PC (2017) Proteomic anaysis of aged microglia: shifts in transcription, bioenergetics, and nutrient response. J Neuroinflamm 14(1):96. https://doi.org/10.1186/s12974-017-0840-7

    CAS  Article  Google Scholar 

  38. Fong CC, Zhang Q, Shi YF, Wu RS, Fong WF, Yang M (2007) Effect of hypoxia on raw264.7 macrophages apoptosis and signaling. Toxicology 235(1–2):52–61. https://doi.org/10.1016/j.tox.2007.03.006

    CAS  Article  PubMed  Google Scholar 

  39. Fuentes L, Wouters K, Hannou SA, Cudejko C, Rigamonti E, Mayi TH, Derudas B, Pattou F, Chinetti-Gbaguidi G, Staels B et al (2011) Downregulation of the tumour suppressor p16ink4a contributes to the polarisation of human macrophages toward an adipose tissue macrophage (atm)-like phenotype. Diabetologia 54(12):3150–3156. https://doi.org/10.1007/s00125-011-2324-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Fulop T, Dupuis G, Baehl S, Le Page A, Bourgade K, Frost E, Witkowski JM, Pawelec G, Larbi A, Cunnane S (2016) From inflamm-aging to immune-paralysis: a slippery slope during aging for immune-adaptation. Biogerontology 17(1):147–157

    CAS  Article  Google Scholar 

  41. Galván-Peña S, O’Neill LAJ (2014) Metabolic reprograming in macrophage polarization. Front Immunol 5:420–420. https://doi.org/10.3389/fimmu.2014.00420

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Gizard F, Heywood EB, Findeisen HM, Zhao Y, Jones KL, Cudejko C, Post GR, Staels B, Bruemmer D (2011) Telomerase activation in atherosclerosis and induction of telomerase reverse transcriptase expression by inflammatory stimuli in macrophages. Arterioscler Thromb Vasc Biol 31(2):245–252. https://doi.org/10.1161/ATVBAHA.110.219808

    CAS  Article  PubMed  Google Scholar 

  43. Hall BM, Balan V, Gleiberman AS, Strom E, Krasnov P, Virtuoso LP, Rydkina E, Vujcic S, Balan K, Gitlin I et al (2016) Aging of mice is associated with p16(ink4a)- and β-galactosidase-positive macrophage accumulation that can be induced in young mice by senescent cells. Aging (Albany N Y) 8(7):1294–1315. https://doi.org/10.18632/aging.100991

    CAS  Article  Google Scholar 

  44. Hall BM, Balan V, Gleiberman AS, Strom E, Krasnov P, Virtuoso LP, Rydkina E, Vujcic S, Balan K, Gitlin II et al (2017) p16(ink4a) and senescence-associated β-galactosidase can be induced in macrophages as part of a reversible response to physiological stimuli. Aging 9(8):1867–1884. https://doi.org/10.18632/aging.101268

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Hayflick L (1998) How and why we age. Exp Gerontol 33(7–8):639–653. https://doi.org/10.1016/s0531-5565(98)00023-0

    CAS  Article  PubMed  Google Scholar 

  46. Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25(3):585–621. https://doi.org/10.1016/0014-4827(61)90192-6

    CAS  Article  PubMed  Google Scholar 

  47. He M, Chiang H-H, Luo H, Zheng Z, Qiao Q, Wang L, Tan M, Ohkubo R, Mu W-C, Zhao S et al (2020) An acetylation switch of the nlrp3 inflammasome regulates aging-associated chronic inflammation and insulin resistance. Cell Metab 31(3):580–591.e585. https://doi.org/10.1016/j.cmet.2020.01.009

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Hernandez-Segura A, Nehme J, Demaria M (2018) Hallmarks of cellular senescence. Trends Cell Biol 28(6):436–453. https://doi.org/10.1016/j.tcb.2018.02.001

    CAS  Article  PubMed  Google Scholar 

  49. Herrero C, Marqués L, Lloberas J, Celada A (2001) Ifn-gamma-dependent transcription of mhc class ii ia is impaired in macrophages from aged mice. J Clin Invest 107(4):485–493. https://doi.org/10.1172/JCI11696

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Hickson LJ, Langhi Prata LGP, Bobart SA, Evans TK, Giorgadze N, Hashmi SK, Herrmann SM, Jensen MD, Jia Q, Jordan KL et al (2019) Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of dasatinib plus quercetin in individuals with diabetic kidney disease. EBioMedicine 47:446–456. https://doi.org/10.1016/j.ebiom.2019.08.069

    Article  PubMed  PubMed Central  Google Scholar 

  51. Holt DJ, Grainger DW (2012) Senescence and quiescence induced compromised function in cultured macrophages. Biomaterials 33(30):7497–7507. https://doi.org/10.1016/j.biomaterials.2012.06.099

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Huo L, Magliano DJ, Rancière F, Harding JL, Nanayakkara N, Shaw JE, Carstensen B (2018) Impact of age at diagnosis and duration of type 2 diabetes on mortality in Australia 1997–2011. Diabetologia 61(5):1055–1063. https://doi.org/10.1007/s00125-018-4544-z

    Article  PubMed  Google Scholar 

  53. Iglesias-Ara A, Zenarruzabeitia O, Fernandez-Rueda J, Sánchez-Tilló E, Field SJ, Celada A, Zubiaga AM (2010) Accelerated DNA replication in e2f1- and e2f2-deficient macrophages leads to induction of the DNA damage response and p21cip1-dependent senescence. Oncogene 29(41):5579–5590. https://doi.org/10.1038/onc.2010.296

    CAS  Article  PubMed  Google Scholar 

  54. Imperatore F, Maurizio J, Vargas Aguilar S, Busch CJ, Favret J, Kowenz-Leutz E, Cathou W, Gentek R, Perrin P, Leutz A et al (2017) Sirt1 regulates macrophage self-renewal. EMBO J 36(16):2353–2372. https://doi.org/10.15252/embj.201695737

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Irvine KM, Skoien R, Bokil NJ, Melino M, Thomas GP, Loo D, Gabrielli B, Hill MM, Sweet MJ, Clouston AD et al (2014) Senescent human hepatocytes express a unique secretory phenotype and promote macrophage migration. World J Gastroenterol 20(47):17851–17862. https://doi.org/10.3748/wjg.v20.i47.17851

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. Kale A, Sharma A, Stolzing A, Desprez P-Y, Campisi J (2020) Role of immune cells in the removal of deleterious senescent cells. Immun Ageing 17(1):16. https://doi.org/10.1186/s12979-020-00187-9

    Article  PubMed  PubMed Central  Google Scholar 

  57. Kang TW, Yevsa T, Woller N, Hoenicke L, Wuestefeld T, Dauch D, Hohmeyer A, Gereke M, Rudalska R, Potapova A et al (2011) Senescence surveillance of pre-malignant hepatocytes limits liver cancer development. Nature 479(7374):547–551. https://doi.org/10.1038/nature10599

    CAS  Article  PubMed  Google Scholar 

  58. Kang Y, Zhang H, Zhao Y, Wang Y, Wang W, He Y, Zhang W, Zhang W, Zhu X, Zhou Y et al (2018) Telomere dysfunction disturbs macrophage mitochondrial metabolism and the nlrp3 inflammasome through the pgc-1α/tnfaip3 axis. Cell Rep 22(13):3493–3506. https://doi.org/10.1016/j.celrep.2018.02.071

    CAS  Article  PubMed  Google Scholar 

  59. Karin O, Agrawal A, Porat Z, Krizhanovsky V, Alon U (2019) Senescent cell turnover slows with age providing an explanation for the gompertz law. Nat Commun 10(1):5495. https://doi.org/10.1038/s41467-019-13192-4

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. Katzir I, Adler M, Karin O, Mendelsohn-Cohen N, Mayo A, Alon U (2021) Senescent cells and the incidence of age-related diseases. Aging Cell 20(3):e13314. https://doi.org/10.1111/acel.13314

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. Kay MM (1975) Mechanism of removal of senescent cells by human macrophages in situ. Proc Natl Acad Sci USA 72(9):3521–3525. https://doi.org/10.1073/pnas.72.9.3521

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. Kim K-H, Park B, Rhee D-K, Pyo S (2015) Acrylamide induces senescence in macrophages through a process involving atf3, ros, p38/jnk, and a telomerase-independent pathway. Chem Res Toxicol 28(1):71–86. https://doi.org/10.1021/tx500341z

    CAS  Article  PubMed  Google Scholar 

  63. Krieger M, Herz J (1994) Structures and functions of multiligand lipoprotein receptors: macrophage scavenger receptors and ldl receptor-related protein (lrp). Annu Rev Biochem 63:601–637. https://doi.org/10.1146/annurev.bi.63.070194.003125

    CAS  Article  PubMed  Google Scholar 

  64. Krishnamurthy J, Ramsey MR, Ligon KL, Torrice C, Koh A, Bonner-Weir S, Sharpless NE (2006) p16ink4a induces an age-dependent decline in islet regenerative potential. Nature 443(7110):453–457. https://doi.org/10.1038/nature05092

    CAS  Article  PubMed  Google Scholar 

  65. Krizhanovsky V, Yon M, Dickins RA, Hearn S, Simon J, Miething C, Yee H, Zender L, Lowe SW (2008) Senescence of activated stellate cells limits liver fibrosis. Cell 134(4):657–667. https://doi.org/10.1016/j.cell.2008.06.049

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. Kumar R, Sharma A, Padwad Y, Sharma R (2020) Preadipocyte secretory factors differentially modulate murine macrophage functions during aging which are reversed by the application of phytochemical egcg. Biogerontology 21(3):325–343. https://doi.org/10.1007/s10522-020-09861-3

    CAS  Article  PubMed  Google Scholar 

  67. Kumari R, Jat P (2021) Mechanisms of cellular senescence: cell cycle arrest and senescence associated secretory phenotype. Front Cell Dev Biol. https://doi.org/10.3389/fcell.2021.645593

    Article  PubMed  PubMed Central  Google Scholar 

  68. Lacerda Mariano L, Rousseau M, Varet H, Legendre R, Gentek R, Saenz Coronilla J, Bajenoff M, Gomez Perdiguero E, Ingersoll MA (2020) Functionally distinct resident macrophage subsets differentially shape responses to infection in the bladder. Sci Adv. https://doi.org/10.1126/sciadv.abc5739

    Article  PubMed  PubMed Central  Google Scholar 

  69. Lee K, Robbins PD, Camell CD (2021) Intersection of immunometabolism and immunosenescence during aging. Curr Opin Pharmacol 57:107–116. https://doi.org/10.1016/j.coph.2021.01.003

    CAS  Article  PubMed  Google Scholar 

  70. Lewis-McDougall FC, Ruchaya PJ, Domenjo-Vila E, Shin Teoh T, Prata L, Cottle BJ, Clark JE, Punjabi PP, Awad W, Torella D et al (2019) Aged-senescent cells contribute to impaired heart regeneration. Aging Cell 18(3):e12931. https://doi.org/10.1111/acel.12931

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. Linehan E, Dombrowski Y, Snoddy R, Fallon PG, Kissenpfennig A, Fitzgerald DC (2014) Aging impairs peritoneal but not bone marrow-derived macrophage phagocytosis. Aging Cell 13(4):699–708. https://doi.org/10.1111/acel.12223

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153(6):1194–1217. https://doi.org/10.1016/j.cell.2013.05.039

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  73. Ludlow AT, Spangenburg EE, Chin ER, Cheng W-H, Roth SM (2014) Telomeres shorten in response to oxidative stress in mouse skeletal muscle fibers. J Gerontol A 69(7):821–830. https://doi.org/10.1093/gerona/glt211

    CAS  Article  Google Scholar 

  74. Lujambio A, Akkari L, Simon J, Grace D, Tschaharganeh DF, Bolden JE, Zhao Z, Thapar V, Joyce JA, Krizhanovsky V et al (2013) Non-cell-autonomous tumor suppression by p53. Cell 153(2):449–460. https://doi.org/10.1016/j.cell.2013.03.020

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. Maduro AT, Luís C, Soares R (2021) Ageing, cellular senescence and the impact of diet: an overview. Porto Biomed J 6(1):e120. https://doi.org/10.1097/j.pbj.0000000000000120

    Article  PubMed  PubMed Central  Google Scholar 

  76. Mahbub S, Deburghgraeve CR, Kovacs EJ (2012) Advanced age impairs macrophage polarization. J Interferon Cytokine Res 32(1):18–26. https://doi.org/10.1089/jir.2011.0058

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. Mazucanti CH, Cabral-Costa JV, Vasconcelos AR, Andreotti DZ, Scavone C, Kawamoto EM (2015) Longevity pathways (mtor, sirt, insulin/igf-1) as key modulatory targets on aging and neurodegeneration. Curr Top Med Chem 15(21):2116–2138. https://doi.org/10.2174/1568026615666150610125715

    CAS  Article  PubMed  Google Scholar 

  78. Mazzoni M, Mauro G, Erreni M, Romeo P, Minna E, Vizioli MG, Belgiovine C, Rizzetti MG, Pagliardini S, Avigni R et al (2019) Senescent thyrocytes and thyroid tumor cells induce m2-like macrophage polarization of human monocytes via a pge2-dependent mechanism. J Exp Clin Cancer Res 38(1):208. https://doi.org/10.1186/s13046-019-1198-8

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  79. Mevorach D, Trahtemberg U, Krispin A, Attalah M, Zazoun J, Tabib A, Grau A, Verbovetski-Reiner I (2010) What do we mean when we write “senescence,“ “apoptosis,“ “necrosis,“ or “clearance of dying cells”? Ann N Y Acad Sci 1209:1–9. https://doi.org/10.1111/j.1749-6632.2010.05774.x

    CAS  Article  PubMed  Google Scholar 

  80. Minamino T, Orimo M, Shimizu I, Kunieda T, Yokoyama M, Ito T, Nojima A, Nabetani A, Oike Y, Matsubara H et al (2009) A crucial role for adipose tissue p53 in the regulation of insulin resistance. Nat Med 15(9):1082–1087. https://doi.org/10.1038/nm.2014

    CAS  Article  PubMed  Google Scholar 

  81. Minhas PS, Liu L, Moon PK, Joshi AU, Dove C, Mhatre S, Contrepois K, Wang Q, Lee BA, Coronado M et al (2019) Macrophage de novo nad(+) synthesis specifies immune function in aging and inflammation. Nat Immunol 20(1):50–63. https://doi.org/10.1038/s41590-018-0255-3

    CAS  Article  PubMed  Google Scholar 

  82. Minutti CM, Knipper JA, Allen JE, Zaiss DM (2017) Tissue-specific contribution of macrophages to wound healing. Semin Cell Dev Biol 61:3–11. https://doi.org/10.1016/j.semcdb.2016.08.006

    CAS  Article  PubMed  Google Scholar 

  83. Mogensen TH (2009) Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev 22(2):240–273. https://doi.org/10.1128/CMR.00046-08

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  84. Nacarelli T, Torres C, Sell C (2016) Mitochondrial reactive oxygen species in cellular senescence. In: Rattan SIS, Hayflick L (eds) Cellular ageing and replicative senescence. Springer, Cham, pp 169–185

    Google Scholar 

  85. Narzt MS, Pils V, Kremslehner C, Nagelreiter IM, Schosserer M, Bessonova E, Bayer A, Reifschneider R, Terlecki-Zaniewicz L, Waidhofer-Söllner P et al (2021) Epilipidomics of senescent dermal fibroblasts identify lysophosphatidylcholines as pleiotropic senescence-associated secretory phenotype (sasp) factors. J Invest Dermatol 141(4s):993–1006.e1015. https://doi.org/10.1016/j.jid.2020.11.020

    CAS  Article  PubMed  Google Scholar 

  86. Nyunoya T, Powers LS, Yarovinsky TO, Butler NS, Monick MM, Hunninghake GW (2003) Hyperoxia induces macrophage cell cycle arrest by adhesion-dependent induction of p21cip1 and activation of the retinoblastoma protein. J Biol Chem 278(38):36099–36106. https://doi.org/10.1074/jbc.M304370200

    CAS  Article  PubMed  Google Scholar 

  87. Ogata Y, Yamada T, Hasegawa S, Sanada A, Iwata Y, Arima M, Nakata S, Sugiura K, Akamatsu H (2021) Sasp-induced macrophage dysfunction may contribute to accelerated senescent fibroblast accumulation in the dermis. Exp Dermatol 30(1):84–91. https://doi.org/10.1111/exd.14205

    CAS  Article  PubMed  Google Scholar 

  88. Ogrodnik M, Evans SA, Fielder E, Victorelli S, Kruger P, Salmonowicz H, Weigand BM, Patel AD, Pirtskhalava T, Inman CL et al (2021) Whole-body senescent cell clearance alleviates age-related brain inflammation and cognitive impairment in mice. Aging Cell 20(2):e13296. https://doi.org/10.1111/acel.13296

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  89. Olivieri F, Prattichizzo F, Grillari J, Balistreri CR (2018) Cellular senescence and inflammaging in age-related diseases. Mediat Inflamm. https://doi.org/10.1155/2018/9076485

    Article  Google Scholar 

  90. Orecchioni M, Ghosheh Y, Pramod AB, Ley K (2019) Macrophage polarization: different gene signatures in m1(lps+) vs. classically and m2(lps–) vs. alternatively activated macrophages. Front Immunol. https://doi.org/10.3389/fimmu.2019.01084

    Article  PubMed  PubMed Central  Google Scholar 

  91. Ostrand-Rosenberg S, Sinha P, Beury DW, Clements VK (2012) Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression. Semin Cancer Biol 22:275–281. https://doi.org/10.1016/j.semcancer.2012.01.011

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  92. Ovadya Y, Landsberger T, Leins H, Vadai E, Gal H, Biran A, Yosef R, Sagiv A, Agrawal A, Shapira A et al (2018) Impaired immune surveillance accelerates accumulation of senescent cells and aging. Nat Commun 9(1):5435. https://doi.org/10.1038/s41467-018-07825-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  93. Palmer AK, Xu M, Zhu Y, Pirtskhalava T, Weivoda MM, Hachfeld CM, Prata LG, van Dijk TH, Verkade E, Casaclang-Verzosa G et al (2019) Targeting senescent cells alleviates obesity-induced metabolic dysfunction. Aging Cell 18(3):e12950. https://doi.org/10.1111/acel.12950

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  94. Pawelec G, Barnett Y (2016) Ageing and senescence in immune cells in vitro and in vivo. In: Rattan SIS, Hayflick L (eds) Cellular ageing and replicative senescence. Springer, Cham, pp 85–95

    Google Scholar 

  95. Pawelec G, Bronikowski A, Cunnane SC, Ferrucci L, Franceschi C, Fülöp T, Gaudreau P, Gladyshev VN, Gonos ES, Gorbunova V et al (2020) The conundrum of human immune system “senescence”. Mech Ageing Dev 192:111357. https://doi.org/10.1016/j.mad.2020.111357

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  96. Pereira BI, Devine OP, Vukmanovic-Stejic M, Chambers ES, Subramanian P, Patel N, Virasami A, Sebire NJ, Kinsler V, Valdovinos A et al (2019) Senescent cells evade immune clearance via hla-e-mediated nk and cd8 + t cell inhibition. Nat Commun 10(1):2387. https://doi.org/10.1038/s41467-019-10335-5

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  97. Prata LGPL, Ovsyannikova IG, Tchkonia T, Kirkland JL (2018) Senescent cell clearance by the immune system: emerging therapeutic opportunities. Semin Immunol 40:101275. https://doi.org/10.1016/j.smim.2019.04.003

    CAS  Article  PubMed  Google Scholar 

  98. Prattichizzo F, De Nigris V, Mancuso E, Spiga R, Giuliani A, Matacchione G, Lazzarini R, Marcheselli F, Recchioni R, Testa R et al (2018) Short-term sustained hyperglycaemia fosters an archetypal senescence-associated secretory phenotype in endothelial cells and macrophages. Redox Biol 15:170–181. https://doi.org/10.1016/j.redox.2017.12.001

    CAS  Article  PubMed  Google Scholar 

  99. Rattan SIS (2016) Origins of the hayflick system, the phenomenon and the limit. In: Rattan SIS, Hayflick L (eds) Cellular ageing and replicative senescence. Springer, Cham, pp 3–14

    Google Scholar 

  100. Renshaw M, Rockwell J, Engleman C, Gewirtz A, Katz J, Sambhara S (2002) Cutting edge: impaired toll-like receptor expression and function in aging. J Immunol 169(9):4697–4701. https://doi.org/10.4049/jimmunol.169.9.4697

    CAS  Article  PubMed  Google Scholar 

  101. Robinson AR, Yousefzadeh MJ, Rozgaja TA, Wang J, Li X, Tilstra JS, Feldman CH, Gregg SQ, Johnson CH, Skoda EM et al (2018) Spontaneous DNA damage to the nuclear genome promotes senescence, redox imbalance and aging. Redox Biol 17:259–273. https://doi.org/10.1016/j.redox.2018.04.007

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  102. Rodriguez-Menocal L, Faridi MH, Martinez L, Shehadeh LA, Duque JC, Wei Y, Mesa A, Pena A, Gupta V, Pham SM et al (2014) Macrophage-derived IL-18 and increased fibrinogen deposition are age-related inflammatory signatures of vascular remodeling. Am J Physiol Heart Circ Physiol 306(5):H641–H653. https://doi.org/10.1152/ajpheart.00641.2013

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  103. Rőszer T (2015) Understanding the mysterious M2 macrophage through activation markers and effector mechanisms. Mediat Inflamm. https://doi.org/10.1155/2015/816460

    Article  Google Scholar 

  104. Ruhland MK, Loza AJ, Capietto A-H, Luo X, Knolhoff BL, Flanagan KC, Belt BA, Alspach E, Leahy K, Luo J et al (2016) Stromal senescence establishes an immunosuppressive microenvironment that drives tumorigenesis. Nat Commun 7(1):11762. https://doi.org/10.1038/ncomms11762

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  105. Sagiv A, Burton DGA, Moshayev Z, Vadai E, Wensveen F, Ben-Dor S, Golani O, Polic B, Krizhanovsky V (2016) Nkg2d ligands mediate immunosurveillance of senescent cells. Aging 8(2):328–344. https://doi.org/10.18632/aging.100897

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  106. Salminen A, Kauppinen A, Kaarniranta K (2018a) Myeloid-derived suppressor cells (mdsc): an important partner in cellular/tissue senescence. Biogerontology 19(5):325–339. https://doi.org/10.1007/s10522-018-9762-8

    CAS  Article  PubMed  Google Scholar 

  107. Salminen A, Kaarniranta K, Kauppinen A (2018b) The role of myeloid-derived suppressor cells (MDSC) in the inflammaging process. Ageing Res Rev 48:1–10. https://doi.org/10.1016/j.arr.2018.09.001

    CAS  Article  PubMed  Google Scholar 

  108. Sampson MJ, Winterbone MS, Hughes JC, Dozio N, Hughes DA (2006) Monocyte telomere shortening and oxidative DNA damage in type 2 diabetes. Diabetes Care 29(2):283–289. https://doi.org/10.2337/diacare.29.02.06.dc05-1715

    CAS  Article  PubMed  Google Scholar 

  109. Schliehe C, Redaelli C, Engelhardt S, Fehlings M, Mueller M, van Rooijen N, Thiry M, Hildner K, Weller H, Groettrup M (2011) Cd8- dendritic cells and macrophages cross-present poly(d,l-lactate-co-glycolate) acid microsphere-encapsulated antigen in vivo. J Immunol 187(5):2112–2121. https://doi.org/10.4049/jimmunol.1002084

    CAS  Article  PubMed  Google Scholar 

  110. Sebastián C, Herrero C, Serra M, Lloberas J, Blasco MA, Celada A (2009) Telomere shortening and oxidative stress in aged macrophages results in impaired stat5a phosphorylation. J Immunol 183(4):2356–2364. https://doi.org/10.4049/jimmunol.0901131

    CAS  Article  PubMed  Google Scholar 

  111. Sedelnikova OA, Horikawa I, Zimonjic DB, Popescu NC, Bonner WM, Barrett JC (2004) Senescing human cells and ageing mice accumulate DNA lesions with unrepairable double-strand breaks. Nat Cell Biol 6(2):168–170. https://doi.org/10.1038/ncb1095

    CAS  Article  PubMed  Google Scholar 

  112. Sen B, Aggarwal S, Nath R, Sehgal R, Rastogi A, Trehanpati N, Ramakrishna G (2021) Secretome of senescent hepatoma cells modulate macrophage polarization and neutrophil extracellular traps formation. bioRxiv. https://doi.org/10.1101/2020.12.30.423905

    Article  PubMed  PubMed Central  Google Scholar 

  113. Sharma R, Padwad Y (2020) Perspectives of the potential implications of polyphenols in influencing the interrelationship between oxi-inflammatory stress, cellular senescence and immunosenescence during aging. Trends Food Sci Technol 98:41–52. https://doi.org/10.1016/j.tifs.2020.02.004

    CAS  Article  Google Scholar 

  114. Sharma R, Kapila R, Kapila S (2013) Probiotics as anti-immunosenescence agents. Food Rev Int 29(2):201–216. https://doi.org/10.1080/87559129.2012.751547

    Article  Google Scholar 

  115. Sharma R, Kapila R, Haq MR, Salingati V, Kapasiya M, Kapila S (2014) Age-associated aberrations in mouse cellular and humoral immune responses. Aging Clin Exp Res 26(4):353–362. https://doi.org/10.1007/s40520-013-0190-y

    Article  PubMed  Google Scholar 

  116. Sharma R, Kumar R, Sharma A, Goel A, Padwad Y (2021) Long term consumption of green tea egcg enhances healthspan and lifespan in mice by mitigating multiple aspects of cellular senescence in mitotic and post-mitotic tissues, gut dysbiosis and immunosenescence. bioRxiv. https://doi.org/10.1101/2021.01.01.425058

    Article  PubMed  PubMed Central  Google Scholar 

  117. Singh MV, Kotla S, Le NT, Ae Ko K, Heo KS, Wang Y, Fujii Y, Thi Vu H, McBeath E, Thomas TN et al (2019) Senescent phenotype induced by p90rsk-nrf2 signaling sensitizes monocytes and macrophages to oxidative stress in hiv-positive individuals. Circulation 139(9):1199–1216. https://doi.org/10.1161/circulationaha.118.036232

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  118. Solana R, Tarazona R, Gayoso I, Lesur O, Dupuis G, Fulop T (2012) Innate immunosenescence: effect of aging on cells and receptors of the innate immune system in humans. Semin Immunol 24(5):331–341. https://doi.org/10.1016/j.smim.2012.04.008

    CAS  Article  PubMed  Google Scholar 

  119. Spadaro O, Camell CD, Bosurgi L, Nguyen KY, Youm YH, Rothlin CV, Dixit VD (2017) Igf1 shapes macrophage activation in response to immunometabolic challenge. Cell Rep 19(2):225–234. https://doi.org/10.1016/j.celrep.2017.03.046

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  120. Swift ME, Burns AL, Gray KL, DiPietro LA (2001) Age-related alterations in the inflammatory response to dermal injury. J Invest Dermatol 117(5):1027–1035. https://doi.org/10.1046/j.0022-202x.2001.01539.x

    CAS  Article  PubMed  Google Scholar 

  121. Tuttle CSL, Waaijer MEC, Slee-Valentijn MS, Stijnen T, Westendorp R, Maier AB (2020) Cellular senescence and chronological age in various human tissues: a systematic review and meta-analysis. Aging Cell 19(2):e13083. https://doi.org/10.1111/acel.13083

    CAS  Article  PubMed  Google Scholar 

  122. Vallejo AN, Brandes JC, Weyand CM, Goronzy JJ (1999) Modulation of cd28 expression: distinct regulatory pathways during activation and replicative senescence. J Immunol 162(11):6572–6579

    CAS  PubMed  Google Scholar 

  123. van Beek AA, Van den Bossche J, Mastroberardino PG, de Winther MPJ, Leenen PJM (2019) Metabolic alterations in aging macrophages: ingredients for inflammaging? Trends Immunol 40(2):113–127. https://doi.org/10.1016/j.it.2018.12.007

    CAS  Article  PubMed  Google Scholar 

  124. Veglia F, Perego M, Gabrilovich D (2018) Myeloid-derived suppressor cells coming of age. Nat Immunol 19(2):108–119. https://doi.org/10.1038/s41590-017-0022-x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  125. Verschoor CP, Johnstone J, Millar J, Dorrington MG, Habibagahi M, Lelic A, Loeb M, Bramson JL, Bowdish DM (2013) Blood cd33(+)hla-dr(-) myeloid-derived suppressor cells are increased with age and a history of cancer. J Leukoc Biol 93(4):633–637. https://doi.org/10.1189/jlb.0912461

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  126. Vĕtvicka V, Tlaskalová-Hogenová H, Pospísil M (1985) Impaired antigen presenting function of macrophages from aged mice. Immunol Invest 14(2):105–114. https://doi.org/10.3109/08820138509042005

    Article  PubMed  Google Scholar 

  127. Vicente R, Mausset-Bonnefont A-L, Jorgensen C, Louis-Plence P, Brondello J-M (2016) Cellular senescence impact on immune cell fate and function. Aging Cell 15(3):400–406. https://doi.org/10.1111/acel.12455

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  128. von Zglinicki T (2002) Oxidative stress shortens telomeres. Trends Biochem Sci 27(7):339–344. https://doi.org/10.1016/s0968-0004(02)02110-2

    Article  Google Scholar 

  129. Wang B, Zhong Y, Li Q, Cui L, Huang G (2018) Autophagy of macrophages is regulated by pi3k/akt/mtor signalling in the development of diabetic encephalopathy. Aging (Albany N Y) 10(10):2772–2782. https://doi.org/10.18632/aging.101586

    CAS  Article  Google Scholar 

  130. Wang H, Fu H, Zhu R, Wu X, Ji X, Li X, Jiang H, Lin Z, Tang X, Sun S et al (2020) Brd4 contributes to lps-induced macrophage senescence and promotes progression of atherosclerosis-associated lipid uptake. Aging 12(10):9240–9259. https://doi.org/10.18632/aging.103200

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  131. Wijshake T, van Deursen JMA (2016) Targeting senescent cells to improve human health. In: Rattan SIS, Hayflick L (eds) Cellular ageing and replicative senescence. Springer, Cham, pp 313–343

    Google Scholar 

  132. Wissler Gerdes EO, Zhu Y, Tchkonia T, Kirkland JL (2020) Discovery, development, and future application of senolytics: theories and predictions. FEBS J 287(12):2418–2427. https://doi.org/10.1111/febs.15264

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  133. Wong CK, Smith CA, Sakamoto K, Kaminski N, Koff JL, Goldstein DR (2017) Aging impairs alveolar macrophage phagocytosis and increases influenza-induced mortality in mice. J Immunol 199(3):1060–1068. https://doi.org/10.4049/jimmunol.1700397

    CAS  Article  PubMed  Google Scholar 

  134. Wu D, Lewis ED, Pae M, Meydani SN (2019) Nutritional modulation of immune function: analysis of evidence, mechanisms, and clinical relevance. Front Immunol. https://doi.org/10.3389/fimmu.2018.03160

    Article  PubMed  PubMed Central  Google Scholar 

  135. Wynn TA, Chawla A, Pollard JW (2013) Macrophage biology in development, homeostasis and disease. Nature 496(7446):445–455. https://doi.org/10.1038/nature12034

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  136. Xu M, Pirtskhalava T, Farr JN, Weigand BM, Palmer AK, Weivoda MM, Inman CL, Ogrodnik MB, Hachfeld CM, Fraser DG et al (2018) Senolytics improve physical function and increase lifespan in old age. Nat Med 24(8):1246–1256. https://doi.org/10.1038/s41591-018-0092-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  137. Xu W, Wong G, Hwang YY, Larbi A (2020) The untwining of immunosenescence and aging. Semin Immunopathol 42(5):559–572. https://doi.org/10.1007/s00281-020-00824-x

    Article  PubMed  PubMed Central  Google Scholar 

  138. Yoshizaki T, Schenk S, Imamura T, Babendure JL, Sonoda N, Bae EJ, Oh DY, Lu M, Milne JC, Westphal C et al (2010) Sirt1 inhibits inflammatory pathways in macrophages and modulates insulin sensitivity. Am J Physiol Endocrinol Metab 298(3):E419–E428. https://doi.org/10.1152/ajpendo.00417.2009

    CAS  Article  PubMed  Google Scholar 

  139. Yousefzadeh MJ, Flores RR, Zhu Y, Schmiechen ZC, Brooks RW, Trussoni CE, Cui Y, Angelini L, Lee K-A, McGowan SJ et al (2021) An aged immune system drives senescence and ageing of solid organs. Nature. https://doi.org/10.1038/s41586-021-03547-7

    Article  PubMed  Google Scholar 

  140. Zandi S, Nakao S, Chun K-H, Fiorina P, Sun D, Arita R, Zhao M, Kim E, Schueller O, Campbell S et al (2015) Rock-isoform-specific polarization of macrophages associated with age-related macular degeneration. Cell Rep 10(7):1173–1186. https://doi.org/10.1016/j.celrep.2015.01.050

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  141. Zhang Y, Unnikrishnan A, Deepa SS, Liu Y, Li Y, Ikeno Y, Sosnowska D, Van Remmen H, Richardson A (2017) A new role for oxidative stress in aging: the accelerated aging phenotype in sod1(-/)(-) mice is correlated to increased cellular senescence. Redox Biol 11:30–37. https://doi.org/10.1016/j.redox.2016.10.014

    CAS  Article  PubMed  Google Scholar 

  142. Zhou D, Borsa M, Simon AK (2021) Hallmarks and detection techniques of cellular senescence and cellular ageing in immune cells. Aging Cell 20(2):e13316. https://doi.org/10.1111/acel.13316

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by a grant from the Department of Science & Technology, Government of India under the INSPIRE Faculty scheme (Grant No. IFA17-LSPA79).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rohit Sharma.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sharma, R. Perspectives on the dynamic implications of cellular senescence and immunosenescence on macrophage aging biology. Biogerontology (2021). https://doi.org/10.1007/s10522-021-09936-9

Download citation

Keywords

  • Macrophages
  • Senescence
  • Immunosenescence
  • Immunometabolism
  • Aging