Anson RM, Guo Z, de Cabo R, Iyun T, Rios M, Hagepanos A, Ingram DK, Lane MA, Mattson MP (2003) Intermittent fasting dissociates beneficial effects of dietary restriction on glucose metabolism and neuronal resistance to injury from calorie intake. Proc Natl Acad Sci USA 100(10):6216–6220. https://doi.org/10.1073/pnas.1035720100
CAS
Article
PubMed
Google Scholar
Antoni R, Johnston KL, Collins AL, Robertson MD (2017) Effects of intermittent fasting on glucose and lipid metabolism. Proc Nutr Soc 76(3):361–368. https://doi.org/10.1017/S0029665116002986
CAS
Article
PubMed
Google Scholar
Austad SN (2019) Sex differences in health and aging: a dialog between the brain and gonad? GeroScience 41(3):267–273. https://doi.org/10.1007/s11357-019-00081-3
Article
PubMed
PubMed Central
Google Scholar
Baek BS, Kwon HJ, Lee KH, Yoo MA, Kim KW, Ikeno Y, Yu BP, Chung HY (1999) Regional difference of ROS generation, lipid peroxidation, and antioxidant enzyme activity in rat brain and their dietary modulation. Arch Pharm Res 22(4):361–366. https://doi.org/10.1007/BF02979058
CAS
Article
PubMed
Google Scholar
Barha CK, Liu-Ambrose T (2018) Exercise and the aging brain: considerations for sex differences. Brain Plast 4(1):53–63. https://doi.org/10.3233/BPL-180067
Article
PubMed
PubMed Central
Google Scholar
Bayliak MM, Lylyk MP, Shmihel HV, Sorochynska OM, Semchyshyn OI, Storey JM, Storey KB, Lushchak VI (2017) Dietary alpha-ketoglutarate promotes higher protein and lower triacylglyceride levels and induces oxidative stress in larvae and young adults but not in middle-aged Drosophila melanogaster. Comp Biochem Physiol A Mol Integr Physiol 204:28–39. https://doi.org/10.1016/j.cbpa.2016.11.005
CAS
Article
PubMed
Google Scholar
Bayliak MM, Sorochynska OM, Kuzniak OV, Gospodaryov DV, Demianchuk OI, Vasylyk YV, Mosiichuk NM, Storey KB, Garaschuk O, Lushchak VI (2021) Middle age as a turning point in mouse cerebral cortex energy and redox metabolism: modulation by every-other-day fasting. Exp Gerontol 145:111182. https://doi.org/10.1016/j.exger.2020.111182
CAS
Article
PubMed
Google Scholar
Bentourkia M, Bol A, Ivanoiu A, Labar D, Sibomana M, Coppens A, Michel C, Cosnard G, De Volder AG (2000) Comparison of regional cerebral blood flow and glucose metabolism in the normal brain: effect of aging. J Neurol Sci 181(1–2):19–28. https://doi.org/10.1016/s0022-510x(00)00396-8
CAS
Article
PubMed
Google Scholar
Borrás C, Stvolinsky S, Lopez-Grueso R, Fedorova T, Gambini J, Boldyrev A, Vina J (2009) Low in vivo brain glucose consumption and high oxidative stress in accelerated aging. FEBS Lett 583(13):2287–2293. https://doi.org/10.1016/j.febslet.2009.06.019
CAS
Article
PubMed
Google Scholar
Bouzier-Sore A-K, Bolaños JP (2015) Uncertainties in pentose-phosphate pathway flux assessment underestimate its contribution to neuronal glucose consumption: relevance for neurodegeneration and aging. Front Aging Neurosci 7:89. https://doi.org/10.3389/fnagi.2015.00089
Article
PubMed
PubMed Central
Google Scholar
Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:289–292. https://doi.org/10.1006/abio.1976.9999
Article
Google Scholar
Butterfield DA, Halliwell B (2019) Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat Rev Neurosci 20:148–160. https://doi.org/10.1038/s41583-019-0132-6
CAS
Article
PubMed
Google Scholar
Camandola S, Mattson MP (2017) Brain metabolism in health, aging, and neurodegeneration. EMBO J 36(11):1474–1492. https://doi.org/10.15252/embj.201695810
CAS
Article
PubMed
PubMed Central
Google Scholar
Dringen R, Hoepken HH, Minich T, Ruedig C (2007) 1.3 Pentose phosphate pathway and NADPH metabolism. In: Lajtha A, Gibson GE, Dienel GA (eds) Handbook of neurochemistry and molecular neurobiology. Springer, Boston, MA, pp 41–66
Chapter
Google Scholar
Fão L, Mota SI, Rego AC (2019) Shaping the Nrf2-ARE-related pathways in Alzheimer’s and Parkinson’s diseases. Ageing Res Rev 54:100942. https://doi.org/10.1016/j.arr.2019.100942
CAS
Article
PubMed
Google Scholar
Flurkey K, Currer JM, Harrison DE (2007) Mouse models in aging research. In: Fox J, Barthold S, Davisson M, Newcomer C, Quimby F, Smith A (eds) The mouse in biomedical research. Normative biology, husbandry, and models, 2nd edn. American College Laboratory Animal Medicine (Elsevier), Burlington MA, pp 637–672
Chapter
Google Scholar
Fontana L, Partridge L, Longo VD (2010) Extending healthy life span-from yeast to humans. Science 328(5976):321–326. https://doi.org/10.1126/science.1172539
CAS
Article
PubMed
PubMed Central
Google Scholar
Garaschuk O, Semchyshyn HM, Lushchak VI (2018) Healthy brain aging: Interplay between reactive species, inflammation and energy supply. Ageing Res Rev 43:26–45. https://doi.org/10.1016/j.arr.2018.02.003
CAS
Article
PubMed
Google Scholar
Goyal MS, Hawrylycz M, Miller JA, Snyder AZ, Raichle ME (2014) Aerobic glycolysis in the human brain is associated with development and neotenous gene expression. Cell Metab 19(1):49–57. https://doi.org/10.1016/j.cmet.2013.11.020
CAS
Article
PubMed
PubMed Central
Google Scholar
Goyal MS, Vlassenko AG, Blazey TM, Su Y, Couture LE, Durbin TJ, Bateman RJ, Benzinger TL, Morris JC, Raichle ME (2017) Loss of brain aerobic glycolysis in normal human aging. Cell Metab 26(2):353–360. https://doi.org/10.1016/j.cmet.2017.07.010
CAS
Article
PubMed
PubMed Central
Google Scholar
Granold M, Moosmann B, Staib-Lasarzik I, Arendt T, Rey A, Engelhard K, Behl C, Hajieva P (2015) High membrane protein oxidation in the human cerebral cortex. Redox Biol 4:200–207. https://doi.org/10.1016/j.redox.2014.12.013
CAS
Article
PubMed
Google Scholar
Grimm A, Eckert A (2017) Brain aging and neurodegeneration: from a mitochondrial point of view. J Neurochem 143(4):418–431. https://doi.org/10.1111/jnc.14037
CAS
Article
PubMed
PubMed Central
Google Scholar
Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11(3):298–300. https://doi.org/10.1093/geronj/11.3.298
CAS
Article
PubMed
Google Scholar
Hoyer S (1985) The effect of age on glucose and energy metabolism in brain cortex of rats. Arch Gerontol Geriatr 4(3):193–203. https://doi.org/10.1016/0167-4943(85)90001-9
CAS
Article
PubMed
Google Scholar
Hwang NR, Yim SH, Kim YM, Jeong J, Song EJ, Lee Y, Lee JH, Choi S, Lee KJ (2009) Oxidative modifications of glyceraldehyde-3-phosphate dehydrogenase play a key role in its multiple cellular functions. Biochem J 423(2):253–264. https://doi.org/10.1042/BJ20090854
CAS
Article
PubMed
Google Scholar
Jaganjac M, Milkovic L, Sunjic SB, Zarkovic N (2020) The NRF2, thioredoxin, and glutathione system in tumorigenesis and anticancer therapies. Antioxidants (Basel) 9(11):1151. https://doi.org/10.3390/antiox9111151
CAS
Article
Google Scholar
Jeng W, Loniewska MM, Wells PG (2013) Brain glucose-6-phosphate dehydrogenase protects against endogenous oxidative DNA damage and neurodegeneration in aged mice. ACS Chem Neurosci 4(7):1123–1132. https://doi.org/10.1021/cn400079y
CAS
Article
PubMed
PubMed Central
Google Scholar
Kanwar SS, Nehru B (2007) Modulatory effects of N-acetylcysteine on cerebral cortex and cerebellum regions of ageing rat brain. Nutr Hosp 22(1):95–100
CAS
PubMed
Google Scholar
Lee CK, Weindruch R, Prolla TA (2000) Gene-expression profile of the ageing brain in mice. Nat Genet 25(3):294–297. https://doi.org/10.1038/77046
CAS
Article
PubMed
Google Scholar
Leong SF, Lai JC, Lim L, Clark JB (1981) Energy-metabolizing enzymes in brain regions of adult and aging rats. J Neurochem 37(6):1548–1556. https://doi.org/10.1111/j.1471-4159.1981.tb06326.x
CAS
Article
PubMed
Google Scholar
Liang KJ, Carlson ES (2019) Resistance, vulnerability and resilience: a review of the cognitive cerebellum in aging and neurodegenerative diseases. Neurobiol Learn Mem 170:106981. https://doi.org/10.1016/j.nlm.2019.01.004
Article
PubMed
Google Scholar
Lushchak VI (2012) Glutathione homeostasis and functions: potential targets for medical interventions. J Amino Acids 2012:736837. https://doi.org/10.1155/2012/736837
CAS
Article
PubMed
PubMed Central
Google Scholar
Lushchak VI (2014) Free radicals, reactive oxygen species, oxidative stress and its classification. Chem Biol Interact 224:164–175. https://doi.org/10.1016/j.cbi.2014.10.016
CAS
Article
PubMed
Google Scholar
Lushchak VI, Gospodaryov DV (2005) Catalases protect cellular proteins from oxidative modification in Saccharomyces cerevisiae. Cell Biol Int 29(3):187–192. https://doi.org/10.1016/j.cellbi.2004.11.001
CAS
Article
PubMed
Google Scholar
Lushchak O, Gospodaryov D (2017) Mimetics of caloric restriction. In: Vaiserman A (ed) Anti-aging drugs: from basic research to clinical practice. Royal Society of Chemistry, CPI Group Ltd, Croydon, UK, pp 229–271
Chapter
Google Scholar
Lushchak VI, Bagnjukova TV, Storey KB (1998) Effect of hypoxia on the activity and binding of glycolytic and associated enzymes in sea scorpion tissues. Braz J Med Biol Res 31(8):1059–1067. https://doi.org/10.1590/S0100-879X199800080005
CAS
Article
PubMed
Google Scholar
Lushchak V, Semchyshyn H, Mandryk S, Lushchak O (2005) Possible role of superoxide dismutases in the yeast Saccharomyces cerevisiae under respiratory conditions. Arch Biochem Biophys 441(1):35–40. https://doi.org/10.1016/j.abb.2005.06.010
CAS
Article
PubMed
Google Scholar
Marosi K, Kim SW, Moehl K, Scheibye-Knudsen M, Cheng A, Cutler R, Camandola S, Mattson MP (2016) 3-Hydroxybutyrate regulates energy metabolism and induces BDNF expression in cerebral cortical neurons. J Neurochem 139(5):769–781. https://doi.org/10.1111/jnc.13868
CAS
Article
PubMed
PubMed Central
Google Scholar
Martin B, Mattson MP, Maudsley S (2006) Caloric restriction and intermittent fasting: two potential diets for successful brain aging. Ageing Res Rev 5(3):332–353. https://doi.org/10.1016/j.arr.2006.04.002
CAS
Article
PubMed
PubMed Central
Google Scholar
Mattson MP, Arumugam TV (2018) Hallmarks of brain aging: adaptive and pathological modification by metabolic states. Cell Metab 27(6):1176–1199. https://doi.org/10.1016/j.cmet.2018.05.011
CAS
Article
PubMed
PubMed Central
Google Scholar
Mattson MP, Longo VD, Harvie M (2017) Impact of intermittent fasting on health and disease processes. Ageing Res Rev 39:46–58. https://doi.org/10.1016/j.arr.2016.10.005
Article
PubMed
Google Scholar
Moyse E, Arsenault M, Gaudreau P, Ferland G, Ramassamy C (2019) Brain region-specific effects of long-term caloric restriction on redox balance of the aging rat. Mech Ageing Dev 179:51–59. https://doi.org/10.1016/j.mad.2019.01.002
CAS
Article
PubMed
Google Scholar
Nóbrega-Pereira S, Fernandez-Marcos PJ, Brioche T, Gomez-Cabrera MC, Salvador-Pascual A, Flores JM, Viña J, Serrano M (2016) G6PD protects from oxidative damage and improves healthspan in mice. Nat Commun 7:10894. https://doi.org/10.1038/ncomms10894
CAS
Article
PubMed
PubMed Central
Google Scholar
Olmedillas Del Moral M, Asavapanumas N, Uzcátegui NL, Garaschuk O (2019) Healthy brain aging modifies microglial calcium signaling in vivo. Int J Mol Sci 20(3):589. https://doi.org/10.3390/ijms20030589
CAS
Article
PubMed Central
Google Scholar
Olmedillas Del Moral M, Fröhlich N, Figarella K, Mojtahedi N, Garaschuk O (2020) Effect of caloric restriction on the in vivo functional properties of aging microglia. Front Immunol 11:750. https://doi.org/10.3389/fimmu.2020.00750
CAS
Article
PubMed
PubMed Central
Google Scholar
Ostan R, Monti D, Gueresi P, Bussolotto M, Franceschi C, Baggio G (2016) Gender, aging and longevity in humans: an update of an intriguing/neglected scenario paving the way to a gender-specific medicine. Clin Sci 130(19):1711–1725. https://doi.org/10.1042/CS20160004
Article
Google Scholar
Ran R, Xu H, Lu A, Bernaudin M, Sharp FR (2005) Hypoxia preconditioning in the brain. Dev Neurosci 27(2–4):87–92. https://doi.org/10.1159/000085979
CAS
Article
PubMed
Google Scholar
Rodacka A, Strumillo J, Puchala M, Serafin E, Bartosz G (2019) Comparison of protective properties of resveratrol and melatonin in the radiation inactivation and destruction of glyceraldehyde-3-phosphate dehydrogenase and lactate dehydrogenase. Int J Radiat Biol 95(11):1472–1483. https://doi.org/10.1080/09553002.2019.1642539
CAS
Article
PubMed
Google Scholar
Sathyasaikumar KV, Swapna I, Reddy PVB, Murthy Ch RK, Dutta Gupta A, Senthilkumaran B, Reddanna P (2007) Fulminant hepatic failure in rats induces oxidative stress differentially in cerebral cortex, cerebellum and pons medulla. Neurochem Res 32(3):517–524
CAS
Article
Google Scholar
Sivandzade F, Bhalerao A, Cucullo L (2019) Cerebrovascular and neurological disorders: protective role of NRF2. Int J Mol Sci 20(14):3433. https://doi.org/10.3390/ijms20143433
CAS
Article
PubMed Central
Google Scholar
Seifar F, Hajibonabi F, Parnianfard N, Ranjkesh M, Valikhani E, Yazdchi M (2018) Age-related glucose metabolism in FDG-PET brain studies. Transl Neurosci Res Rev 1(1):5–9. https://doi.org/10.36959/817/520
Article
Google Scholar
Sohal RS, Forster MJ (2014) Caloric restriction and the aging process: a critique. Free Radic Biol Med 73:366–382. https://doi.org/10.1016/j.freeradbiomed.2014.05.015
CAS
Article
PubMed
Google Scholar
Sorochynska OM, Bayliak MM, Vasylyk YV, Kuzniak OV, Drohomyretska IZ, Klonovskyi AYA, Storey JM, Storey KB, Lushchak VI (2019) Intermittent fasting causes metabolic stress and leucopenia in young mice. Ukr Biochem J 91(1):53–64. https://doi.org/10.15407/ubj91.01.053
CAS
Article
Google Scholar
Stacklies W, Redestig H, Scholz M, Walther D, Selbig J (2007) pcaMethods – a Bioconductor package providing PCA methods for incomplete data. Bioinformatics 23(9):1164–1167. https://doi.org/10.1093/bioinformatics/btm069
CAS
Article
PubMed
Google Scholar
Vaishnavi SN, Vlassenko AG, Rundle MM, Snyder AZ, Mintun MA, Raichle ME (2010) Regional aerobic glycolysis in the human brain. Proc Natl Acad Sci USA 107(41):17757–17762. https://doi.org/10.1073/pnas.1010459107
Article
PubMed
Google Scholar
Vandresen-Filho S, Carbolin Martins W, Bohn Bertoldo D, Mancini G, Fabro De Bem A, Inês Tasca C (2015) Cerebral cortex, hippocampus, striatum and cerebellum show differential susceptibility to quinolinic acid-induced oxidative stress. Neurol Sci 36(8):1449–1456. https://doi.org/10.1007/s10072-015-2180-7
Article
PubMed
Google Scholar
Vasylkovska R, Petriv N, Semchyshyn H (2015) Carbon sources for yeast growth as a precondition of hydrogen peroxide induced hormetic phenotype. Int J Microbiol 2015:697813. https://doi.org/10.1155/2015/697813
CAS
Article
PubMed
PubMed Central
Google Scholar
Venkateshappa C, Harish G, Mahadevan A, Srinivas Bharath MM, Shankar SK (2012) Elevated oxidative stress and decreased antioxidant function in the human hippocampus and frontal cortex with increasing age: implications for neurodegeneration in Alzheimer’s disease. Neurochem Res 37(8):1601–1614. https://doi.org/10.1007/s11064-012-0755-8
CAS
Article
PubMed
Google Scholar
Walsh ME, Shi Y, Van Remmen H (2014) The effects of dietary restriction on oxidative stress in rodents. Free Radic Biol Med 66:88–99. https://doi.org/10.1016/j.freeradbiomed.2013.05.037
CAS
Article
PubMed
Google Scholar
Xie K, Neff F, Markert A, Rozman J, Aguilar-Pimentel JA, Amarie OV, Becker L, Brommage R, Garrett L, Henzel KS, Hölter SM, Janik D, Lehmann I, Moreth K, Pearson BL, Racz I, Rathkolb B, Ryan DP, Schröder S, Treise I, Bekeredjian R, Busch DH, Graw J, Ehninger G, Klingenspor M, Klopstock T, Ollert M, Sandholzer M, Schmidt-Weber C, Weiergräber M, Wolf E, Wurst W, Zimmer A, Gailus-Durner V, Fuchs H, Hrabě De Angelis M, Ehninger D (2017) Every-other-day feeding extends lifespan but fails to delay many symptoms of aging in mice. Nat Commun 8(1):155. https://doi.org/10.1038/s41467-017-00178-3
CAS
Article
PubMed
PubMed Central
Google Scholar
Yoshida T, Nakamura H, Masutani H, Yodoi J (2005) The involvement of thioredoxin and thioredoxin binding protein-2 on cellular proliferation and aging process. Ann N Y Acad Sci 1055:1–12. https://doi.org/10.1196/annals.1323.002
CAS
Article
PubMed
Google Scholar
Zhang HS, Zhang ZG, Du GY, Sun HL, Liu HY, Zhou Z, Gou XM, Wu XH, Yu XY, Huang YH (2019) Nrf2 promotes breast cancer cell migration via up-regulation of G6PD/HIF-1α/Notch1 axis. J Cell Mol Med 23(5):3451–3463. https://doi.org/10.1111/jcmm.14241
CAS
Article
PubMed
PubMed Central
Google Scholar