Skip to main content

Metolazone upregulates mitochondrial chaperones and extends lifespan in Caenorhabditis elegans

Abstract

Accumulating studies have argued that the mitochondrial unfolded protein response (UPRmt) is a mitochondrial stress response that promotes longevity in model organisms. In the present study, we screened an off-patent drug library to identify compounds that activate UPRmt using a mitochondrial chaperone hsp-6::GFP reporter system in Caenorhabditis elegans. Metolazone, a diuretic primarily used to treat congestive heart failure and high blood pressure, was identified as a prominent hit as it upregulated hsp-6::GFP and not the endoplasmic reticulum chaperone hsp-4::GFP. Furthermore, metolazone specifically induced the expression of mitochondrial chaperones in the HeLa cell line. Metolazone also extended the lifespan of worms in a atfs-1 and ubl-5-dependent manner. Notably, metolazone failed to increase lifespan in worms with knocked-down nkcc-1. These results suggested that metolazone activates the UPRmt across species and prolongs the lifespan of C. elegans.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Bennett CF, Vander Wende H, Simko M, Klum S, Barfield S, Choi H, Pineda VV, Kaeberlein M (2014) Activation of the mitochondrial unfolded protein response does not predict longevity in Caenorhabditis elegans. Nat Commun 5:3483. https://doi.org/10.1038/ncomms4483

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Benedetti C, Haynes CM, Yang Y, Harding HP, Ron D (2006) Ubiquitin-like protein 5 positively regulates chaperone gene expression in the mitochondrial unfolded protein response. Genetics 174:229–239. https://doi.org/10.1534/genetics.106.061580

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen X, Ji ZL, Chen YZ (2002) TTD: therapeutic target database. Nucleic Acids Res 30:412–415. https://doi.org/10.1093/nar/30.1.412

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Conte D, MacNeil LT, Walhout AJM, Mello CC (2015) RNA interference in Caenorhabditis elegans. Curr Protoc Mol Biol 109:26.3.1-26.3.30. https://doi.org/10.1002/0471142727.mb2603s109

    Article  Google Scholar 

  6. Dillin A, Hsu AL, Arantes-Oliveira N, Lehrer-Graiwer J, Hsin H, Fraser AG, Kamath RS, Ahringer J, Kenyon C (2002) Rates of behavior and aging specified by mitochondrial function during development. Science 298:2398–2401. https://doi.org/10.1126/science.1077780

    CAS  Article  PubMed  Google Scholar 

  7. Dogan SA, Pujol C, Maiti P, Kukat A, Wang S, Hermans S, Senft K, Wibom R, Rugarli EI, Trifunovic A (2014) Tissue-specific loss of DARS2 activates stress responses independently of respiratory chain deficiency in the heart. Cell Metab 19:458–469. https://doi.org/10.1016/j.cmet.2014.02.004

    CAS  Article  PubMed  Google Scholar 

  8. Durieux J, Wolff S, Dillin A (2011) The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell 144:79–91. https://doi.org/10.1016/j.cell.2010.12.016

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Feng J, Bussière F, Hekimi S (2001) Mitochondrial electron transport is a key determinant of life span in Caenorhabditis elegans. Dev Cell 1:633–644. https://doi.org/10.1016/S1534-5807(01)00071-5

    CAS  Article  PubMed  Google Scholar 

  10. Fiorese CJ, Schulz AM, Lin YF, Rosin N, Pellegrino MW, Haynes CM (2016) The transcription factor ATF5 mediates a mammalian mitochondrial UPR. Curr Biol 26:2037–2043. https://doi.org/10.1016/j.cub.2016.06.002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Han B, Bellemer A, Koelle MR (2015) An evolutionarily conserved switch in response to GABA affects development and behavior of the locomotor circuit of Caenorhabditis elegans. Genetics 199:1159–1172. https://doi.org/10.1534/genetics.114.173963

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Haynes CM, Ron D (2010) The mitochondrial UPR - protecting organelle protein homeostasis. J Cell Sci 123:3849–3855. https://doi.org/10.1242/jcs.075119

    CAS  Article  PubMed  Google Scholar 

  13. Haynes CM, Yang Y, Blais SP, Neubert TA, Ron D (2010) The matrix peptide exporter HAF-1 signals a mitochondrial UPR by activating the transcription factor ZC376.7 in C. elegans. Mol Cell 37:529–540. https://doi.org/10.1016/j.molcel.2010.01.015

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Houtkooper RH, Mouchiroud L, Ryu D, Moullan N, Katsyuba E, Knott G, Williams RW, Auwerx J (2013) Mitonuclear protein imbalance as a conserved longevity mechanism. Nature 497:451–457. https://doi.org/10.1038/nature12188

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Janssens GE, Houtkooper RH (2020) Identification of longevity compounds with minimized probabilities of side effects. Biogerontology. https://doi.org/10.1007/s10522-020-09887-7

    Article  PubMed  PubMed Central  Google Scholar 

  16. Jovaisaite V, Mouchiroud L, Auwerx J (2014) The mitochondrial unfolded protein response, a conserved stress response pathway with implications in health and disease. J Exp Biol 217:137–143. https://doi.org/10.1242/jeb.090738

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. Kage-Nakadai E, Uehara T, Mitani S (2011) H+/myo-inositol transporter genes, hmit-1.1 and hmit-1.2, have roles in the osmoprotective response in Caenorhabditis elegans. Biochem Biophys Res Commun 410:471–477. https://doi.org/10.1016/j.bbrc.2011.06.001

    CAS  Article  PubMed  Google Scholar 

  18. Kamath RS, Martinez-Campos M, Zipperlen P, Fraser AG, Ahringer J (2001) Effectiveness of specific RNA-mediated interference through ingested double-stranded RNA in Caenorhabditis elegans. Genome Biol 2:RESEARCH0002. https://doi.org/10.1186/gb-2000-2-1-research0002

    CAS  Article  PubMed  Google Scholar 

  19. Klass MR (1977) Aging in the nematode Caenorhabditis elegans: major biological and environmental factors influencing life span. Mech Ageing Dev 6:413–429. https://doi.org/10.1016/0047-6374(77)90043-4

    CAS  Article  PubMed  Google Scholar 

  20. Martinus RD, Garth GP, Webster TL, Cartwright P, Naylor DJ, Høj PB, Hoogenraad NJ (1996) Selective induction of mitochondrial chaperones in response to loss of the mitochondrial genome. Eur J Biochem 240:98–103. https://doi.org/10.1111/j.1432-1033.1996.0098h.x

    CAS  Article  PubMed  Google Scholar 

  21. Melber A, Haynes CM (2018) UPR. Cell Res 28:281–295. https://doi.org/10.1038/cr.2018.16

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. Mishra SK, Ammon T, Popowicz GM, Krajewski M, Nagel RJ, Ares M, Holak TA, Jentsch S (2011) Role of the ubiquitin-like protein Hub1 in splice-site usage and alternative splicing. Nature 474:173–178. https://doi.org/10.1038/nature10143

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Mouchiroud L, Houtkooper RH, Moullan N, Katsyuba E, Ryu D, Cantó C, Mottis A, Jo YS, Viswanathan M, Schoonjans K et al (2013) The NAD(+)/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 154:430–441. https://doi.org/10.1016/j.cell.2013.06.016

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Münch C, Harper JW (2016) Mitochondrial unfolded protein response controls matrix pre-RNA processing and translation. Nature 534:710–713. https://doi.org/10.1038/nature18302

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Nargund AM, Pellegrino MW, Fiorese CJ, Baker BM, Haynes CM (2012) Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation. Science 337:587–590. https://doi.org/10.1126/science.1223560

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Owusu-Ansah E, Song W, Perrimon N (2013) Muscle mitohormesis promotes longevity via systemic repression of insulin signaling. Cell 155:699–712. https://doi.org/10.1016/j.cell.2013.09.021

    CAS  Article  PubMed  Google Scholar 

  27. Rauthan M, Pilon M (2015) A chemical screen to identify inducers of the mitochondrial unfolded protein response in C. elegans. Worm 4:e1096490. https://doi.org/10.1080/21624054.2015.1096490

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Rauthan M, Ranji P, Aguilera Pradenas N, Pitot C, Pilon M (2013) The mitochondrial unfolded protein response activator ATFS-1 protects cells from inhibition of the mevalonate pathway. Proc Natl Acad Sci USA 110:5981–5986. https://doi.org/10.1073/pnas.1218778110

    CAS  Article  PubMed  Google Scholar 

  29. Rosenberg J, Gustafsson F, Galatius S, Hildebrandt PR (2005) Combination therapy with metolazone and loop diuretics in outpatients with refractory heart failure: an observational study and review of the literature. Cardiovasc Drugs Ther 19:301–306. https://doi.org/10.1007/s10557-005-3350-2

    CAS  Article  PubMed  Google Scholar 

  30. Runkel ED, Liu S, Baumeister R, Schulze E (2013) Surveillance-activated defenses block the ROS-induced mitochondrial unfolded protein response. PLoS Genet 9:e1003346. https://doi.org/10.1371/journal.pgen.1003346

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Schultheis PJ, Lorenz JN, Meneton P, Nieman ML, Riddle TM, Flagella M, Duffy JJ, Doetschman T, Miller ML, Shull GE (1998) Phenotype resembling Gitelman’s syndrome in mice lacking the apical Na+-Cl- cotransporter of the distal convoluted tubule. J Biol Chem 273:29150–29155. https://doi.org/10.1074/jbc.273.44.29150

    CAS  Article  PubMed  Google Scholar 

  32. Schulz AM, Haynes CM (2015) UPR(mt)-mediated cytoprotection and organismal aging. Biochim Biophys Acta 1847:1448–1456. https://doi.org/10.1016/j.bbabio.2015.03.008

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Shah RR, Stonier PD (2018) Withdrawal of prenylamine: perspectives on pharmacological, clinical and regulatory outcomes following the first QT-related casualty. Ther Adv Drug Saf 9:475–493. https://doi.org/10.1177/2042098618780854

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Shpilka T, Haynes CM (2018) The mitochondrial UPR: mechanisms, physiological functions and implications in ageing. Nat Rev Mol Cell Biol 19:109–120. https://doi.org/10.1038/nrm.2017.110

    CAS  Article  PubMed  Google Scholar 

  35. Tain LS, Lozano E, Sáez AG, Leroi AM (2008) Dietary regulation of hypodermal polyploidization in C. elegans. BMC Dev Biol 8:28. https://doi.org/10.1186/1471-213X-8-28

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Wang Z, Clark NR, Ma’ayan A (2016) Drug-induced adverse events prediction with the LINCS L1000 data. Bioinformatics 32:2338–2345. https://doi.org/10.1093/bioinformatics/btw168

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Wu D, Rea SL, Yashin AI, Johnson TE (2006) Visualizing hidden heterogeneity in isogenic populations of C. elegans. Exp Gerontol 41:261–270. https://doi.org/10.1016/j.exger.2006.01.003

    CAS  Article  PubMed  Google Scholar 

  38. Zhao Q, Wang J, Levichkin IV, Stasinopoulos S, Ryan MT, Hoogenraad NJ (2002) A mitochondrial specific stress response in mammalian cells. EMBO J 21:4411–4419. https://doi.org/10.1093/emboj/cdf445

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Caenorhabditis Genetics Center (CGC), which is funded by the National Institutes of Health (NIH) Office of Research Infrastructure Programs (P40 OD010440), for providing the C. elegans strains. This work was supported by Osaka City University Strategic Research Grant 2018 and 2020 (to E.K.-N.) and the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Number 18K10998 (to E.K.-N.). This work was also supported by the Platform for Drug Discovery, Informatics, and Structural Life Science from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Funding

This work was funded by Osaka City University Strategic Research Grant 2018 and 2020 (to E.K.-N.) and the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Number 18K10998 (to E.K.-N.).

Author information

Affiliations

Authors

Contributions

EKN designed the study. AI carried out the lifespan assays and RNAi experiments. QZ carried out the chemical screens. YTNK, MY, RK, and SS carried out the lifespan assays, measurements of body size and brood size, and determination of pharyngeal pumping rates. YTNK and YTNM carried out the cell culture experiments and performed data analyses. EKN wrote the manuscript. EKN and YN supervised the project. All the authors have read and approved the manuscript.

Corresponding author

Correspondence to Eriko Kage-Nakadai.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ito, A., Zhao, Q., Tanaka, Y. et al. Metolazone upregulates mitochondrial chaperones and extends lifespan in Caenorhabditis elegans. Biogerontology 22, 119–131 (2021). https://doi.org/10.1007/s10522-020-09907-6

Download citation

Keywords

  • UPRmt
  • Off-patent drug
  • Metolazone
  • Longevity
  • C. elegans