Carbohydrate-restricted diet promotes skin senescence in senescence-accelerated prone mice

Abstract

This study used senescence-accelerated prone mice (SAMP8) to examine the effects of a carbohydrate-restricted diet on aging and skin senescence, to determine how long-term carbohydrate restriction affects the aging process. Three-week-old male SAMP8 mice were divided into three groups after 1 week of preliminary feeding: one was given a controlled diet, the other was given a high-fat diet, and the third was given a carbohydrate-restricted diet. Ad libitum feeding was administered until the mice reached 50 weeks of age. Before the end of the test period, a grading test was used to evaluate visible aging in the mice. After the test period, serum and skin samples in mice were obtained and submitted for analysis. As a result, the grading test demonstrated that there was significant progression of visible aging in the carbohydrate-restricted group, as well as a decreased survival rate. Histological examination of the skin revealed that the epidermis and dermis in the carbohydrate-restricted group had become thinner. Analysis of the mechanisms involved demonstrated an increase in serum interleukin-6, aggravated skin senescence, inhibition of skin autophagy and activation of skin mTOR. Therefore, this study proved that a carbohydrate-restricted diet promoted skin senescence in senescence-accelerated mice.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Asano M, Iwagaki Y, Sugawara S, Kushida M, Okouchi R, Yamamoto K, Tsuduki T (2018) Effects of the Japanese diet in combination with exercise on visceral fat accumulation. Nutrition 57:173–182. https://doi.org/10.1016/j.nut.2018.05.023

    Article  CAS  PubMed  Google Scholar 

  2. Bedarida T, Baron S, Vessieres E, Vibert F, Ayer A, Marchiol-Fournigault C, Henrion D, Paul JL, Noble F, Golmard JL, Beaudeux JL, Cottart CH, Nivet-Antoine V (2014) High-protein-low-carbohydrate diet: deleterious metabolic and cardiovascular effects depend on age. Am J Physiol Heart Circ Physiol 307:H649–H657. https://doi.org/10.1152/ajpheart.00291.2014

    Article  CAS  PubMed  Google Scholar 

  3. Bhawan J, Oh CH, Lew R, Nehal KS, Labadie RR, Tsay A, Gilchrest BA (1992) Histopathologic differences in the photoaging process in facial versus arm skin. Am J Dermatopathol 14:224–230

    Article  CAS  PubMed  Google Scholar 

  4. Bringhenti I, Schultz A, Rachid T, Bomfim MA, Mandarim-de-Lacerda CA, Aguila MB (2011) An early fish oil-enriched diet reverses biochemical, liver and adipose tissue alterations in male offspring from maternal protein restriction in mice. J Nutr Biochem 22:1009–1014

    Article  CAS  PubMed  Google Scholar 

  5. Butterfield DA, Poon HF (2005) The senescence-accelerated prone mouse (SAMP8): a model of age-related cognitive decline with relevance to alterations of the gene expression and protein abnormalities in Alzheimer’s disease. Exp Gerontol 40:774–783

    Article  CAS  PubMed  Google Scholar 

  6. Dehghan M, Mente A, Zhang X, Swaminathan S, Li W, Mohan V, Iqbal R, Kumar R, Wentzel-Viljoen E, Rosengren A, Amma LI, Avezum A, Chifamba J, Diaz R, Khatib R, Lear S, Lopez-Jaramillo P, Liu X, Gupta R, Mohammadifard N, Gao N, Oguz A, Ramli AS, Seron P, Sun Y, Szuba A, Tsolekile L, Wielgosz A, Yusuf R, Hussein Yusufali A, Teo KK, Rangarajan S, Dagenais G, Bangdiwala SI, Islam S, Anand SS, Yusuf S, Prospective Urban Rural Epidemiology (PURE) study investigators (2017) Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): a prospective cohort study. Lancet 390:2050–2062. https://doi.org/10.1016/S0140-6736(17)32252-3

    Article  CAS  PubMed  Google Scholar 

  7. Donati A, Cavallini G, Paradiso C, Vittorini S, Pollera M, Gori Z, Bergamini E (2001) Age-related changes in the autophagic proteolysis of rat isolated liver cells: effects of antiaging dietary restrictions. J Gerontol A 56:B375–B383

    Article  CAS  Google Scholar 

  8. Everitt AV, Rattan SI, Le Couteur DG, de Cabo R (eds) (2010) Calorie restriction, aging and longevity. Springer, New York

    Google Scholar 

  9. Fromentin G, Darcel N, Chaumontet C, Marsset-Baglieri A, Nadkarni N, Tomé D (2012) Peripheral and central mechanisms involved in the control of food intake by dietary amino acids and proteins. Nutr Res Rev 25:29–39

    Article  CAS  PubMed  Google Scholar 

  10. Gilchrest BA, Blog FB, Szabo G (1979) Effects of aging and chronic sun exposure on melanocytes in human skin. J Invest Dermatol 73:141–143

    Article  CAS  PubMed  Google Scholar 

  11. Gilchrest BA, Murphy GF, Soter NA (1982) Effect of chronologic aging and ultraviolet irradiation on Langerhans cells in human epidermis. J Invest Dermatol 79:85–88

    Article  CAS  PubMed  Google Scholar 

  12. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, Yokoyama M, Mishima K, Saito I, Okano H, Mizushima N (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889

    Article  CAS  Google Scholar 

  13. Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K, Nadon NL, Wilkinson JE, Frenkel K, Carter CS, Pahor M, Javors MA, Fernandez E, Miller RA (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460:392–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Honma T, Kitano Y, Kijima R, Jibu Y, Kawakami Y, Tsuduki T, Nakagawa K, Miyazawa T (2013) Comparison of the health benefits of different eras of japanese foods: lipid and carbohydrate metabolism focused research. Nippon Shokuhin Kagaku Kogaku Kaishi 60:541–553

    Article  CAS  Google Scholar 

  15. Hosokawa M, Sakura M, Chiba Y (2013) The grading score system: a method for evaluating the degree of senescence in SAM strains of mice. In: Takeda T (ed) The senescence-accelerated mouse (SAM): achievements and future directions. Elsevier, Amsterdam, pp 561–567

    Google Scholar 

  16. Inami Y, Waguri S, Sakamoto A, Kouno T, Nakada K, Hino O, Watanabe S, Ando J, Iwadate M, Yamamoto M, Lee MS, Tanaka K, Komatsu M (2011) Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. J Cell Biol 193:275–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ishikawa H, Guo X, Sugawara S, Iwagaki Y, Yamamoto K, Tsuduki T (2018a) Effect of the Japanese diet during pregnancy and lactation or post-weaning on the risk of metabolic syndrome in offspring. Biosci Biotechnol Biochem 82:515–524. https://doi.org/10.1080/09168451.2018.1428788

    Article  CAS  PubMed  Google Scholar 

  18. Ishikawa H, Guo X, Sugawara S, Iwagaki Y, Yamamoto K, Konno A, Nishiuchi M, Tsuduki T (2018b) Influence of Japanese diet consumption during pregnancy and lactation on lipid metabolism in offspring. Nutrition. https://doi.org/10.1016/j.nut.2018.06.006

    Article  PubMed  Google Scholar 

  19. Iwagaki Y, Sakamoto Y, Sugawara S, Mizowaki Y, Yamamoto K, Sugawara T, Kimura K, Tsuduki T (2017) Identification of characteristic components and foodstuffs in healthy Japanese diet and the health effects of a diet with increased use frequency of these foodstuffs. Mol Nutr Food Res 61:1700430. https://doi.org/10.1002/mnfr.201700430

    Article  CAS  Google Scholar 

  20. Iwagaki Y, Sugawara S, Huruya Y, Sato M, Wu Q, E S, Yamamoto K, Tsuduki T (2018) The 1975 Japanese diet has a stress reduction effect in mice: search for physiological effects using metabolome analysis. Biosci Biotechnol Biochem 82:709–715

    Article  CAS  PubMed  Google Scholar 

  21. Jacobsen E, Billings JK, Frantz RA, Kinney CK, Stewart ME, Downing DT (1985) Age-related changes in sebaceous wax ester secretion rates in men and women. J Invest Dermatol 85:483–485

    Article  CAS  PubMed  Google Scholar 

  22. Kamada Y, Funakoshi T, Shintani T, Nagano K, Ohsumi M, Ohsumi Y (2000) Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol 150:1507–1513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kamada Y, Yoshino K, Kondo C, Kawamata T, Oshiro N, Yonezawa K, Ohsumi Y (2010) Tor directly controls the Atg1 kinase complex to regulate autophagy. Mol Cell Biol 30:1049–1058

    Article  CAS  PubMed  Google Scholar 

  24. Kapahi P, Chen D, Rogers AN, Katewa SD, Li PW, Thomas EL, Kockel L (2010) With TOR, less is more: a key role for the conserved nutrient-sensing TOR pathway in aging. Cell Metab 11:453–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kitano Y, Honma T, Hatakeyama Y, Jibu Y, Kawakami Y, Tsuduki T, Nakagawa K, Miyazawa T (2014) The effect of Japanese foods which changed with the age on the risk of obesity in mice. J Jpn Soc Nutr Food Sci 67:73–85

    Article  CAS  Google Scholar 

  26. Kligman AM (1979) Perspectives and problems in cutaneous gerontology. J Invest Dermatol 73:39–46

    Article  CAS  PubMed  Google Scholar 

  27. Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880–884

    Article  CAS  PubMed  Google Scholar 

  28. Kurban RS, Kurban AK (1993) Common skin disorders of aging: diagnosis and treatment. Geriatrics 48: 30–1, 35–6, 39–42

  29. Kushida M, Okouchi R, Iwagaki Y, Asano M, Du MX, Yamamoto K, Tsuduki T (2018) Fermented soybean suppresses visceral fat accumulation in mice. Mol Nutr Food Res 17:54. https://doi.org/10.1002/mnfr.201701054

    CAS  Article  Google Scholar 

  30. Longas MO, Russell CS, He XY (1987) Evidence for structural changes in dermatan sulfate and hyaluronic acid with aging. Carbohydr Res 159:127–136

    Article  CAS  PubMed  Google Scholar 

  31. Miller RA, Harrison DE, Astle CM, Baur JA, Boyd AR, de Cabo R, Fernandez E, Flurkey K, Javors MA, Nelson JF, Orihuela CJ, Pletcher S, Sharp ZD, Sinclair D, Starnes JW, Wilkinson JE, Nadon NL, Strong R (2011) Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J Gerontol A 66:191–201

    Article  CAS  Google Scholar 

  32. Ministry of Agriculture, Forestry and Fisheries (2011) Food supply and demand figures (2010 fiscal year version). Ministry of Agriculture, Forestry and Fisherie, Tokyo

    Google Scholar 

  33. Ministry of Health, Labour and Welfare (2011) Patients survey. Ministry of Health, Labour and Welfare, Tokyo

    Google Scholar 

  34. Mizowaki Y, Sugawara S, Yamamoto K, Sakamoto Y, Iwagaki Y, Kawakami Y, Igarashi M, Tsuduki T (2017) Comparison of the effects of the 1975 Japanese diet and the modern Mediterranean diet on lipid metabolism in mice. J Oleo Sci 66:507–519. https://doi.org/10.5650/jos.ess16241

    Article  CAS  PubMed  Google Scholar 

  35. Montagna W, Carlisle K (1979) Structural changes in aging human skin. J Invest Dermatol 73:47–53

    Article  CAS  PubMed  Google Scholar 

  36. Procacci P, Bozza G, Buzzelli G, Della Corte M (1970) The cutaneous pricking pain threshold in old age. Gerontol Clin (Basel) 12:213–218

    Article  CAS  Google Scholar 

  37. Rebrin I, Zicker S, Wedekind KJ, Paetau-Robinson I, Packer L, Sohal RS (2005) Effect of antioxidant-enriched diets on glutathione redox status in tissue homogenates and mitochondria of the senescence-accelerated mouse. Free Radic Biol Med 39:549–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shai I, Schwarzfuchs D, Henkin Y, Shahar DR, Witkow S, Greenberg I, Golan R, Fraser D, Bolotin A, Vardi H, Tangi-Rozental O, Zuk-Ramot R, Sarusi B, Brickner D, Schwartz Z, Sheiner E, Marko R, Katorza E, Thiery J, Fiedler GM, Blüher M, Stumvoll M, Stampfer MJ (2008) Dietary Intervention Randomized Controlled Trial (DIRECT) group, weight loss with a low-carbohydrate, mediterranean, or low-fat diet. N Engl J Med 359:229–241. https://doi.org/10.1056/NEJMoa0708681

    Article  CAS  PubMed  Google Scholar 

  39. Shimizu T, Mori K, Ouchi K, Kushida M, Tsuduki T (2018) Effects of dietary intake of japanese mushrooms on visceral fat accumulation and gut microbiota in mice. Nutrients 10:610. https://doi.org/10.3390/nu10050610

    Article  CAS  PubMed Central  Google Scholar 

  40. Shuster S, Black MM, McVitie E (1975) The influence of age and sex on skin thickness, skin collagen and density. Br J Dermatol 93:639–643

    Article  CAS  PubMed  Google Scholar 

  41. Solon-Biet SM, McMahon AC, Ballard JW, Ruohonen K, Wu LE, Cogger VC, Warren A, Huang X, Pichaud N, Melvin RG, Gokarn R, Khalil M, Turner N, Cooney GJ, Sinclair DA, Raubenheimer D, Le Couteur DG, Simpson SJ (2014) The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell Metab 19:418–430. https://doi.org/10.1016/j.cmet.2014.02.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Srividhya R, Jyothilakshmi V, Arulmathi K, Senthilkumaran V, Kalaiselvi P (2008) Attenuation of senescence-induced oxidative exacerbations in aged rat brain by (-)-epigallocatechin-3-gallate. Int J Dev Neurosci 26:217–223

    Article  CAS  PubMed  Google Scholar 

  43. Sugawara S, Kushida M, Iwagaki Y, Asano M, Yamamoto K, Tomata Y, Tsuji I, Tsuduki T (2018) The 1975 type Japanese diet improves lipid metabolic parameters in younger adults: a randomized controlled trial. J Oleo Sci 67:599–607. https://doi.org/10.5650/jos.ess17259

    Article  CAS  PubMed  Google Scholar 

  44. Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C, Waguri S, Eishi Y, Hino O, Tanaka K, Mizushima N (2011) Autophagy-deficient mice develop multiple liver tumors. Genes Dev 25:795–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Takeda T, Hosokawa M, Takeshita S, Irino M, Higuchi K, Matsushita T, Tomita Y, Yasuhira K, Hamamoto H, Shimizu K, Ishii M, Yamamuro T (1981) A new murine model of accelerated senescence. Mech Ageing Dev 17:183–194

    Article  CAS  PubMed  Google Scholar 

  46. Takeda T, Hosokawa M, Higuchi K (1991) Senescence-accelerated mouse (SAM): a novel murine model of accelerated senescence. J Am Geriatr Soc 39:911–919

    Article  CAS  PubMed  Google Scholar 

  47. Takeda T, Matsushita T, Kurozumi M, Takemura K, Higuchi K, Hosokawa M (1997) Pathobiology of the senescence-accelerated mouse (SAM). Exp Gerontol 32:117–127

    Article  CAS  PubMed  Google Scholar 

  48. Terman A (1995) The effect of age on formation and elimination of autophagic vacuoles in mouse hepatocytes. Gerontology 41(Suppl 2):319–326

    Article  PubMed  Google Scholar 

  49. Tsuduki T, Takeshika N, Nakamura Y, Nakagawa K, Igarashi M, Miyazawa T (2008) DNA microarray analysis of rat liver after ingestion of Japanese and American food. J Jpn Soc Nutr Food Sci 61:255–264

    Article  CAS  Google Scholar 

  50. Tsuduki T, Honma T, Nakagawa K, Ikeda I, Miyazawa T (2011) Long-term intake of fish oil increases oxidative stress and decreases lifespan in senescence-accelerated mice. Nutrition 27:334–337

    Article  CAS  PubMed  Google Scholar 

  51. Tsuduki T, Kuriyama K, Nakagawa K, Miyazawa T (2013) Tocotrienol (unsaturated vitamin E) suppresses degranulation of mast cells and reduces allergic dermatitis in mice. J Oleo Sci 62:825–834

    Article  CAS  PubMed  Google Scholar 

  52. Tsuzuki T, Tokuyama Y, Igarashi M, Miyazawa T (2004) Tumor growth suppression by alpha-eleostearic acid, a linolenic acid isomer with a conjugated triene system, via lipid peroxidation. Carcinogenesis 25:1417–1425

    Article  CAS  PubMed  Google Scholar 

  53. Uddin MN, Nishio N, Ito S, Suzuki H, Isobe K (2012) Autophagic activity in thymus and liver during aging. Age (Dordr) 34:75–85. https://doi.org/10.1007/s11357-011-9221-9

    Article  Google Scholar 

  54. Yamamoto K, E S, Hatakeyama Y, Sakamoto Y, Tsuduki T (2015) High-fat diet intake from senescence inhibits the attenuation of cell functions and the degeneration of villi with aging in the small intestine, and inhibits the attenuation of lipid absorption ability in SAMP8 mice. J Clin Biochem Nutr 57:204–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yamamoto K, E S, Hatakeyama Y, Sakamoto Y, Honma T, Jibu Y, Kawakami Y, Tsuduki T (2016) The Japanese diet from 1975 delays senescence and prolongs life span in SAMP8 mice. Nutrition 32:122–128

    Article  CAS  PubMed  Google Scholar 

  56. Yamamoto K, Iwagaki Y, Watanabe K, Nochi T, Aso H, Tsuduki T (2018) Effects of a moderate-fat diet enriched with fish oil on intestinal lipid absorption in a senescence-accelerated prone mouse model. Nutrition 50:26–35. https://doi.org/10.1016/j.nut.2017.10.015

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the Project of the NARO Bio-oriented Technology Research Advancement Institution (Advanced integration research for agriculture and interdisciplinary fields).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tsuyoshi Tsuduki.

Ethics declarations

Conflict of interest

There are no conflicts of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, Q., E, S., Yamamoto, K. et al. Carbohydrate-restricted diet promotes skin senescence in senescence-accelerated prone mice. Biogerontology 20, 71–82 (2019). https://doi.org/10.1007/s10522-018-9777-1

Download citation

Keywords

  • Aging
  • Autophagy
  • Carbohydrate-restricted diet
  • IL-6
  • mTOR
  • Senescence-accelerated mice