Skip to main content

Mutual interactions between telomere heterogeneity and cell culture growth dynamics shape stochasticity of cell aging

Abstract

Mathematical modeling and computational simulations are often used to explain the stochastic nature of cell aging. The models published thus far are based on the molecular mechanisms of telomere biology and how they dictate the dynamics of cell culture proliferation. However, the influence of cell growth conditions on telomere dynamics has been widely overlooked. These conditions include interactions with surrounding cells through contact inhibition, gradual accumulation of non-dividing cells, culture propagation and other cell culture maintenance factors. In order to follow the intrinsic growth dynamics of normal human fibroblasts we employed the fluorescent dye DiI and FACS analysis which can distinguish cells that undergo different numbers of divisions within culture. We observed rapid generation of cell subpopulations undergoing from 0 to 9 divisions within growing cultures at each passage analyzed. These large differences in number of divisions among individual cells guarantee a strong impact on generation of telomere length heterogeneity in normal cell cultures and suggest that culture conditions should be included in future modeling of cell senescence.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Arino O, Kimmel M, Webb GF (1995) Mathematical modeling of the loss of telomere sequences. J Theor Biol 177:45–57

    CAS  Article  PubMed  Google Scholar 

  • Arkus N (2005) A mathematical model of cellular apoptosis and senescence through the dynamics of telomere loss. J Theor Biol 235:13–32

    CAS  Article  PubMed  Google Scholar 

  • Bourgeron T, Xu Z, Doumic M, Teresa Teixeira M (2015) The asymmetry of telomere replication contributes to replicative senescence heterogeneity. Sci Rep 5:15326

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Calado RT, Young NS (2009) Telomere diseases. N Engl J Med 361:2353–2365

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Calado R, Young N (2012) Telomeres in disease. F1000 Med Rep 4:8

    PubMed  PubMed Central  Google Scholar 

  • Counter CM, Avilion AA, LeFeuvre CE, Stewart NG, Greider CW, Harley CB, Bacchetti S (1992) Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J 11:1921–1929

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cukusic Kalajzic A, Škrobot Vidaček N, Huzak M, Ivankovic M, Rubelj I (2014) Telomere Q-PNA-FISH—reliable results from stochastic signals. PLoS ONE 9:e92559

    Article  PubMed  PubMed Central  Google Scholar 

  • de Lange T (2002) Protection of mammalian telomeres. Oncogene 21:532–540

    Article  PubMed  Google Scholar 

  • de Lange T, Zhu X-D, Küster B, Mann M, Petrini JHJ (2000) Cell-cycle-regulated association of RAD50/MRE11/NBS1 with TRF2 and human telomeres. Nat Genet 25:347–352

    Article  PubMed  Google Scholar 

  • Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, Medrano EE, Linskens M, Rubelj I, Pereira-Smith O et al (1995) A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92:9363–9367

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Ferenac M, Polancec D, Huzak M, Pereira-Smith O, Rubelj I (2005) Early-senescing human skin fibroblasts do not demonstrate accelerated telomere shortening. J Gerontol A Biol Sci Med Sci 60:820–829

    Article  PubMed  Google Scholar 

  • Griffith JD, Comeau L, Rosenfield S, Stansel RM, Bianchi A, Moss H, de Lange T (1999) Mammalian telomeres end in a large duplex loop. Cell 97:503–514

    CAS  Article  PubMed  Google Scholar 

  • Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during ageing of human fibroblasts. Nature 345:458–460

    CAS  Article  PubMed  Google Scholar 

  • Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37:614–636

    CAS  Article  PubMed  Google Scholar 

  • Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25:585–621

    CAS  Article  PubMed  Google Scholar 

  • Hemann MT, Strong MA, Hao LY, Greider CW (2001) The shortest telomere, not average telomere length, is critical for cell viability and chromosome stability. Cell 107:67–77

    CAS  Article  PubMed  Google Scholar 

  • Levy MZ, Allsopp RC, Futcher AB, Greider CW, Harley CB (1992) Telomere end-replication problem and cell aging. J Mol Biol 225:951–960

    CAS  Article  PubMed  Google Scholar 

  • Nelson G, Wordsworth J, Wang C, Jurk D, Lawless C, Martin-Ruiz C, von Zglinicki T (2012) A senescent cell bystander effect: senescence-induced senescence. Aging Cell 11:345–349

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Olofsson P, Bertuch AA (2010) Modeling growth and telomere dynamics in Saccharomyces cerevisiae. J Theor Biol 263:353–359

    CAS  Article  PubMed  Google Scholar 

  • Olofsson P, Kimmel M (1999) Stochastic models of telomere shortening. Math Biosci 158:75–92

    CAS  Article  PubMed  Google Scholar 

  • Portugal RD, Land MGP, Svaiter BF (2008) A computational model for telomere-dependent cell-replicative aging. Biosystems 91:262–267

    CAS  Article  PubMed  Google Scholar 

  • Proctor CJ, Kirkwood TBL (2002) Modelling telomere shortening and the role of oxidative stress. Mech Ageing Dev 123:351–363

    CAS  Article  PubMed  Google Scholar 

  • Proctor CJ, Kirkwood TBL (2003) Modelling cellular senescence as a result of telomere state. Aging Cell 2:151–157

    CAS  Article  PubMed  Google Scholar 

  • Rodier F, Campisi J (2011) Four faces of cellular senescence. J Cell Biol 192:547–556

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Rubelj I, Vondracek Z (1999) Stochastic mechanism of cellular aging—abrupt telomere shortening as a model for stochastic nature of cellular aging. J Theor Biol 197:425–438

    CAS  Article  PubMed  Google Scholar 

  • Rubelj I, Huzak M, Brdar B (2000) Sudden senescence syndrome plays a major role in cell culture proliferation. Mech Ageing Dev 112:233–241

    CAS  Article  PubMed  Google Scholar 

  • Rubelj I, Huzak M, Brdar B, Pereira-Smith OM (2002) A single-stage mechanism controls replicative senescence through Sudden Senescence Syndrome. Biogerontology 3:213–222

    CAS  Article  PubMed  Google Scholar 

  • Shay JW, Wright WE (2001) Telomeres and telomerase: implications for cancer and aging. Radiat Res 155:188–193

    CAS  Article  PubMed  Google Scholar 

  • Tan Z (1999) Intramitotic and intraclonal variation in proliferative potential of human diploid cells: explained by telomere shortening. J Theor Biol 198:259–268

    CAS  Article  PubMed  Google Scholar 

  • Vidaček NŠ, Ćukušić A, Ivanković M, Fulgosi H, Huzak M, Smith JR, Rubelj I (2010) Abrupt telomere shortening in normal human fibroblasts. Exp Gerontol 45:235–242

    Article  PubMed  Google Scholar 

  • von Zglinicki T (2002) Oxidative stress shortens telomeres. Trends Biochem Sci 27:339–344

    Article  Google Scholar 

  • Wu P, Takai H, de Lange T (2012) Telomeric 3′ overhangs derive from resection by Exo1 and Apollo and fill-in by POT1b-associated CST. Cell 150:39–52

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Duc KD, Holcman D, Teixeira MT (2013) The length of the shortest telomere as the major determinant of the onset of replicative senescence. Genetics 194:847–857

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Mary Sopta for critically reading and editing the manuscript, Ela Kosor and Alenka Gagro for their participation in FACS analysis. We also thank Milena Ivanković, Marina Ferenac Kiš, Maja Matulić and Andrea Ćukušić Kalajžić for valuable discussions and practical assistance during the course of the experiments. This work was supported by Zaklada Adris.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivica Rubelj.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 7

[3H]thymidine labelling and SA-β Gal staining of NF fibroblasts at PD 10. a) Senescent cells are enlarged, they do not incorporate radioactivity and show strong SA-β Gal staining (purple arrow); young cells are smaller, 3H-T+ and do not show SA-β Gal staining (yellow arrow) b) Most cells were dividing and total of 97.25% incorporated radioactivity, among which 11.76% also showed traces of SA-β-Gal staining. > 1000 cells were counted for statistics (TIFF 1053 kb)

Supplementary Fig. 8

[3H]thymidine labelling index and SA-β Gal staining of NF fibroblasts at PDs 10 and 15. > 1000 cells were counted for statistics (TIFF 126 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nanić, L., Vidaček, N.Š., Ravlić, S. et al. Mutual interactions between telomere heterogeneity and cell culture growth dynamics shape stochasticity of cell aging. Biogerontology 19, 23–31 (2018). https://doi.org/10.1007/s10522-017-9736-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-017-9736-2

Keywords

  • Telomere
  • Senescence
  • Cell culture
  • Cell proliferation
  • DiI
  • SA-β-galactosidase