Skip to main content

Advertisement

Log in

Angiogenesis is VEGF-independent in the aged striatum of male rats exposed to acute hypoxia

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

Brain hypoxia is involved in many diseases. The activation of angiogenesis is one of the major adaptive mechanisms to counteract the adverse effects of hypoxia. In a previous work, we have shown that the adult rat striatum promotes angiogenesis in response to hypoxia via upregulation of the most important proangiogenic factor, the vascular endothelial growth factor (VEGF). However, the effects of hypoxia on angiogenesis in the aged striatum remain unknown and constitute our aim. Here we show the upregulation of hypoxia-inducible factor-1α in the striatum of aged (24–25 months old) Wistar rats exposed to acute hypoxia and analysed during a reoxygenation period ranging from 0 h to 5 days. While the mRNA expression of the proangiogenic factors VEGF, transforming growth factor-β1 (TGF-β1), and adrenomedullin dropped at 0 h post-hypoxia compared to normoxic control, no changes were detected at the protein level, showing an impaired response of these proangiogenic factors to hypoxia in the aged striatum. However, the striatal blood vessel network increased at 24 h of reoxygenation, suggesting that mechanisms independent from these proangiogenic factors may be involved in hypoxia-induced angiogenesis in the striatum of aged rats. A thorough understanding of the factors involved in the response to hypoxia is essential to guide the design of therapies for hypoxia-related diseases in the aged brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahluwalia A, Tarnawski AS (2012) Critical role of hypoxia sensor-HIF-1α in VEGF gene activation. Implications for angiogenesis and tissue injury healing. Curr Med Chem 19(1):90–97

    Article  CAS  PubMed  Google Scholar 

  • Becker JB, Prendergast BJ, Liang JW (2016) Female rats are not more variable than male rats: a meta-analysis of neuroscience studies. Biol Sex Differ 26(7):34. doi:10.1186/s13293-016-0087-5

    Article  Google Scholar 

  • Benderro GF, Lamanna JC (2011) Hypoxia-induced angiogenesis is delayed in aging mouse brain. Brain Res 1389:50–60. doi:10.1016/j.brainres.2011.03.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown WR, Thore CR (2011) Review: cerebral microvascular pathology in ageing and neurodegeneration. NeuropatholApplNeurobiol 37(1):56–74. doi:10.1111/j.1365-2990.2010.01139.x

    CAS  Google Scholar 

  • Buga AM, Scholz CJ, Kumar S, Herndon JG, Alexandru D, Cojocaru GR, Dandekar T, Popa-Wagner A (2012) Identification of new therapeutic targets by genome-wide analysis of gene expression in the ipsilateral cortex of aged rats after stroke. PLoS ONE 7(12):e50985. doi:10.1371/journal.pone.0050985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buga AM, Margaritescu C, Scholz CJ, Radu E, Zelenak C, Popa-Wagner A (2014a) Transcriptomics of post-stroke angiogenesis in the aged brain. Front Aging Neurosci 18(6):44. doi:10.3389/fnagi.2014.00044

    Google Scholar 

  • Buga AM, Margaritescu C, Scholz CJ, Radu E, Zelenak C, Popa-Wagner A (2014b) Transcriptomics of post-stroke angiogenesis in the aged brain. Front Aging Neurosci 6:44. doi:10.3389/fnagi.2014.00044

    Article  PubMed  PubMed Central  Google Scholar 

  • Correia SC, Carvalho C, Cardoso S, Santos RX, Plácido AI, Candeias E, Duarte AI, Moreira PI (2013) Defective HIF signaling pathway and brain response to hypoxia in neurodegenerative diseases: not an “iffy” question! Curr Pharm Des 19(38):6809–6822

    Article  CAS  PubMed  Google Scholar 

  • Di Ieva A, Grizzi F, Ceva-Grimaldi G, Russo C, Gaetani P, Aimar E, Levi D, Pisano P, Tancioni F, Nicola G, Tschabitscher M, Dioguardi N, Baena RR (2007) Fractal dimension as a quantitator of the microvasculature of normal and adenomatous pituitary tissue. J Anat 211(5):673–680

    Article  PubMed  PubMed Central  Google Scholar 

  • Donovan D, Harmey JH, Toomey D, Osborne DH, Redmond HP, Bouchier-Hayes DJ (1997) TGF beta-1 regulation of VEGF production by breast cancer cells. Ann SurgOncol 4(8):621–627

    CAS  Google Scholar 

  • Efimenko A, Starostina E, Kalinina N, Stolzing A (2011) Angiogenic properties of aged adipose derived mesenchymal stem cells after hypoxic conditioning. J Transl Med 9:10. doi:10.1186/1479-5876-9-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9(6):669–676

    Article  CAS  PubMed  Google Scholar 

  • Fong GH (2008) Mechanisms of adaptive angiogenesis to tissue hypoxia. Angiogenesis 11(2):121–140. doi:10.1007/s10456-008-9107-3

    Article  PubMed  Google Scholar 

  • Gardoni F, Bellone C (2015) Modulation of the glutamatergic transmission by Dopamine: a focus on Parkinson, Huntington and Addiction diseases. Front Cell Neurosci 9:25. doi:10.3389/fncel.2015.00025

    Article  PubMed  PubMed Central  Google Scholar 

  • Gozal D, Row BW, Kheirandish L, Liu R, Guo SZ, Qiang F, Brittian KR (2003) Increased susceptibility to intermittent hypoxia in aging rats: changes in proteasomal activity, neuronal apoptosis and spatial function. J Neurochem 86(6):1545–1552

    Article  CAS  PubMed  Google Scholar 

  • Grizzi F, Russo C, Colombo P, Franceschini B, Frezza EE, Cobos E, Chiriva-Internati M (2005) Quantitative evaluation and modeling of two-dimensional neovascular network complexity: the surface fractal dimension. BMC Cancer 8(5):14

    Article  Google Scholar 

  • Hung SP, Yang MH, Tseng KF, Lee OK (2013) Hypoxia-induced secretion of TGF-β1 in mesenchymal stem cell promotes breast cancer cell progression. Cell Transplant 22(10):1869–1882. doi:10.3727/096368912X657954

    Article  PubMed  Google Scholar 

  • Hwang IS, Fung ML, Liong EC, Tipoe GL, Tang F (2007) Age-related changes in adrenomedullin expression and hypoxia-inducible factor-1 activity in the rat lung and their responses to hypoxia. J Gerontol A BiolSci Med Sci 62(1):41–49

    Article  Google Scholar 

  • Ignacak ML, Harbaugh SV, Dayyat E, Row BW, Gozal D, Czyzyk-Krzeska MF (2009) Intermittent hypoxia regulates RNA polymerase II in hippocampus and prefrontal cortex. Neuroscience 158(4):1436–1445. doi:10.1016/j.neuroscience.2008.11.025

    Article  CAS  PubMed  Google Scholar 

  • Iimuro S, Shindo T, Moriyama N, Amaki T, Niu P, Takeda N, Iwata H, Zhang Y, Ebihara A, Nagai R (2004) Angiogenic effects of adrenomedullin in ischemia and tumor growth. Circ Res 95(4):415–423

    Article  CAS  PubMed  Google Scholar 

  • Itoh Y, Arnold AP (2015) Are females more variable than males in gene expression? Meta-analysis of microarray datasets. Biol Sex Differ 6:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson AB, Denko N, Barton MC (2008) Hypoxia induces a novel signature of chromatin modifications and global repression of transcription. Mutat Res 640(1–2):174–179. doi:10.1016/j.mrfmmm.2008.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam YT, Lecce L, Clayton Z, Simpson P, Karas R, Ng M (2016) Aging impairs ischemia-induced neovascularization by attenuating the mobilization of bone marrow-derived angiogenic cells. IJC MetabEndocr 12:19–29

    Google Scholar 

  • Lawlor DA, Ebrahim S, Davey-Smith G (2002) Role of endogenous oestrogen in aetiology of coronary heart disease. BMJ 325:311–312

    Article  PubMed  PubMed Central  Google Scholar 

  • Li H, Witte K, August M, Brausch I, Godtel-Armbrust U, Habermeier A, Closs EI, Oelze M, Munzel T, Forstermann U (2006) Reversal of endothelial nitric oxide synthase uncoupling and up-regulation of endothelial nitric oxide synthase expression lowers blood pressure in hypertensive rats. J Am CollCardiol 47:2536–2544

    Article  CAS  Google Scholar 

  • Logan A, Berry M, Gonzalez AM, Frautschy SA, Sporn MB, Baird A (1994) Effects of transforming growth factor beta 1 on scar production in the injured central nervous system of the rat. Eur J Neurosci 6(3):355–363

    Article  CAS  PubMed  Google Scholar 

  • Mancardi D, Varetto G, Bucci E, Maniero F, Guiot C (2008) Fractal parameters and vascular networks: facts & artifacts. Theor Biol Med Model 17(5):12. doi:10.1186/1742-4682-5-12

    Article  Google Scholar 

  • McMahon S, Charbonneau M, Grandmont S, Richard DE, Dubois CM (2006) Transforming growth factor beta1 induces hypoxia-inducible factor-1 stabilization through selective inhibition of PHD2 expression. J BiolChem 281(34):24171–24181

    CAS  Google Scholar 

  • Molina F, Rus A, Peinado MA, Del Moral ML (2013) Short-term hypoxia/reoxygenation activates the angiogenic pathway in rat caudate putamen. J Biosci 38(2):363–371

    Article  CAS  PubMed  Google Scholar 

  • Molina F, Peinado MA, del Moral ML, Rus A (2016) Response of Nitric Oxide system to hypobaric hypoxia in the aged striatum. Gerontology. doi:10.1159/000450607

    PubMed  Google Scholar 

  • Ndubuizu OI, Chavez JC, LaManna JC (2009) Increased prolyl 4-hydroxylase expression and differential regulation of hypoxia-inducible factors in the aged rat brain. Am J PhysiolRegulIntegr Comp Physiol 297(1):R158–R165. doi:10.1152/ajpregu.90829.2008

    Article  CAS  Google Scholar 

  • Ndubuizu OI, Tsipis CP, Li A, LaManna JC (2010) Hypoxia-inducible factor-1 (HIF-1)-independent microvascular angiogenesis in the aged rat brain. BrainRes 1366:101–109. doi:10.1016/j.brainres.2010.09.064

    CAS  Google Scholar 

  • Patt S, Sampaolo S, Théallier-Jankó A, Tschairkin I, Cervós-Navarro J (1997) Cerebral angiogenesis triggered by severe chronic hypoxia displays regional differences. J Cereb Blood Flow Metab 17(7):801–806

    Article  CAS  PubMed  Google Scholar 

  • Pisani A, Calabresi P, Bernardi G (1997) Hypoxia in striatal and cortical neurones: membrane potential and Ca2 + measurements. NeuroReport 8(5):1143–1147

    Article  CAS  PubMed  Google Scholar 

  • Prabhakar NR (2001) Oxygen sensing during intermittent hypoxia: cellular and molecular mechanisms. J ApplPhysiol 90:1986–1994

    Article  CAS  Google Scholar 

  • Prendergast BJ, Onishi KG, Zucker I (2014) Female mice liberated for inclusion in neuroscience and biomedical research. Neurosci Biobehav Rev 40:1–5

    Article  PubMed  Google Scholar 

  • Rich-Edwards JW, Manson JE, Hennekens CH, Buring JE (1995) The primary prevention of coronary heart disease in women. N Engl J Med 332:1758–1766

    Article  CAS  PubMed  Google Scholar 

  • Rivard A, Berthou-Soulie L, Principe N, Kearney M, Curry C, Branellec D, Semenza GL, Isner JM (2000) Age-dependent defect in vascular endothelial growth factor expression is associated with reduced hypoxia-inducible factor 1 activity. J BiolChem 275(38):29643–29647

    CAS  Google Scholar 

  • Sandu RE, Uzoni A, Ciobanu O, Moldovan M, Anghel A, Radu E, Coogan AN, Popa-Wagner A (2016) Post-stroke gaseous hypothermia increases vascular density but not neurogenesis in the ischemic penumbra of aged rats. Restor Neurol Neurosci 34(3):401–414. doi:10.3233/RNN-150600

    CAS  PubMed  Google Scholar 

  • Sullivan JM, Fowlkes LP (1996) The clinical aspects of estrogen and the cardiovascular system. Obstet Gynecol 87:36S–43S

    Article  CAS  PubMed  Google Scholar 

  • Wang LN, Xu D, Gui QP, Zhu MW, Zhang HH, Hu YZ (2004) Morphological and quantatitive capillary changes in aging human brain. Zhongguo Yi XueKeXue Yuan XueBao 26(2):104–107

    Google Scholar 

  • Wang Y, Zhang JS, Qian J, Huang GC, Chen Q (2006) Adrenomedullin regulates expressions of transforming growth factor-beta1 and beta1-induced matrix metalloproteinase-2 in hepatic stellate cells. Int J ExpPathol 87(3):177–184

    CAS  Google Scholar 

  • Wang L, Bhatta A, Toque HA, Rojas M, Yao L, Xu Z, Patel C, Caldwell RB, Caldwell RW (2015) Arginase inhibition enhances angiogenesis in endothelial cells exposed to hypoxia. Microvasc Res 98:1–8. doi:10.1016/j.mvr.2014.11.002

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank to Dr. Rafael Lomas for his statistic assistance, and to Dra. M. Rosario Sepúlveda for critical reading of the manuscript.

Funding

This study was funded by Instituto de Salud Carlos III (PI081222) and University of Jaén (RFC/PP2008/UJA_08_16_20).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alma Rus.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in animals were in accordance with the ethical standards of the University of Jaén (Spain) at which the study was conducted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molina, F., del Moral, M.L., Peinado, M.Á. et al. Angiogenesis is VEGF-independent in the aged striatum of male rats exposed to acute hypoxia. Biogerontology 18, 759–768 (2017). https://doi.org/10.1007/s10522-017-9709-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-017-9709-5

Keywords

Navigation