Skip to main content

Advertisement

Log in

A disease with a sweet tooth: exploring the Warburg effect in Alzheimer’s disease

  • Review Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

After more than 80 years from the revolutionary discoveries of Otto Warburg, who observed high glucose dependency, with increased glycolysis and lactate production regardless of oxygen availability in most cancer cells, the ‘Warburg effect’ returns to the fore in neuronal cells affected by Alzheimer’s disease (AD). Indeed, it seems that, in the mild phase of AD, neuronal cells “prefer” to use the energetically inefficient method of burning glucose by glycolysis, as in cancer, proving to become resistant to β-amyloid (Aβ)-dependent apoptosis. However, in the late phase, while most AD brain cells die in response to Aβ toxicity, only small populations of neurons, exhibiting increased glucose uptake and glycolytic flux, are able to survive as they are resistant to Aβ. Here we draw an overview on the metabolic shift for glucose utilization from oxidative phosphorylation to glycolysis, focusing on the hypothesis that, as extreme attempt to oppose the impending death, mitochondria—whose dysfunction and central role in Aβ toxicity is an AD hallmark—are sent into quiescence, this likely contributing to activate mechanisms of resistance to Aβ-dependent apoptosis. Finally, the attempt turns out fruitless since the loss of the adaptive advantage afforded by elevated aerobic glycolysis exacerbates the pathophysiological processes associated with AD, making the brain susceptible to Aβ-induced neurotoxicity and leading to cell death and dementia. The understanding of how certain nerve cells become resistant to Aβ toxicity, while the majority dies, is an attractive challenge toward the identification of novel possible targets for AD therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1

Similar content being viewed by others

References

  • Abu-Hamad S, Arbel N, Calo D, Arzoine L, Israelson A, Keinan N, Ben-Romano R, Friedman O, Shoshan-Barmatz V (2009) The VDAC1 N-terminus is essential both for apoptosis and the protective effect of antiapoptotic proteins. J Cell Sci 122:1906–1916

    Article  CAS  PubMed  Google Scholar 

  • Amadoro G, Corsetti V, Ciotti MT, Florenzano F, Capsoni S, Amato G, Calissano P (2011) Endogenous Aβ causes cell death via early tau hyperphosphorylation. Neurobiol Aging 32:969–990

    Article  CAS  PubMed  Google Scholar 

  • Amadoro G, Corsetti V, Atlante A, Florenzano F, Capsoni S, Bussani R, Mercanti D, Calissano P (2012) Interaction between NH(2)-tau fragment and Aβ in Alzheimer’s disease mitochondria contributes to the synaptic deterioration. Neurobiol Aging 33:833.e1-25

    Article  PubMed  CAS  Google Scholar 

  • Arvanitakis Z, Wilson RS, Bienias JL, Evans DA, Bennett DA (2004) Diabetes mellitus and risk of Alzheimer disease and decline in cognitive function. Arch Neurol 61:661–666

    Article  PubMed  Google Scholar 

  • Ashraf A, Fan Z, Brooks DJ, Edison P (2015) Cortical hypermetabolism in MCI subjects: a compensatory mechanism? Eur J Nucl Med Mol Imaging 42:447–458

    Article  CAS  PubMed  Google Scholar 

  • Atlante A, Gagliardi S, Minervini GM, Marra E, Passarella S, Calissano P (1996) Rapid uncoupling of oxidative phosphorylation accompanies glutamate toxicity in rat cerebellar granule cells. Neuroreport 7:2519–2523

    Article  CAS  PubMed  Google Scholar 

  • Atlante A, Bobba A, Calissano P, Passarella S, Marra E (2003) The apoptosis/necrosis transition in cerebellar granule cells depends on the mutual relationship of the antioxidant and the proteolytic systems which regulate ROS production and cytochrome c release en route to death. J Neurochem 84:960–971

    Article  CAS  PubMed  Google Scholar 

  • Atlante A, Giannattasio S, Bobba A, Gagliardi S, Petragallo V, Calissano P, Marra E, Passarella S (2005) An increase in the ATP levels occurs in cerebellar granule cells en route to apoptosis in which ATP derives from both oxidative phosphorylation and anaerobic glycolysis. Biochim Biophys Acta 1708:50–62

    Article  CAS  PubMed  Google Scholar 

  • Atlante A, Bobba A, de Bari L, Fontana F, Calissano P, Marra E, Passarella S (2006) Caspase-dependent alteration of the ADP/ATP translocator triggers the mitochondrial permeability transition which is not required for the low-potassium dependent apoptosis of cerebellar granule cells. J Neurochem 97:1166–1181

    Article  CAS  PubMed  Google Scholar 

  • Atlante A, de Bari L, Bobba A, Marra E, Passarella S (2007) Transport and metabolism of L-lactate occur in mitochondria from cerebellar granule ce lls and are modified in cells undergoing low potassium dependent apoptosis. Biochim Biophys Acta 1767:1285–1299

    Article  CAS  PubMed  Google Scholar 

  • Atlante A, Amadoro G, Bobba A, de Bari L, Corsetti V, Pappalardo G, Marra E, Calissano P, Passarella S (2008) A peptide containing residues 26-44 of tau protein impairs mitochondrial oxidative phosphorylation acting at the level of the adenine nucleotide translocator. Biochim Biophys Acta 1777:1289–1300

    Article  CAS  PubMed  Google Scholar 

  • Aubert A, Costalat R, Magistretti PJ, Pellerin L (2005) Brain lactate kinetics. Modelling evidence for neuronal lactate uptake upon activation. Proc Natl Acad Sci USA 102:16448–16453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bélanger M, Yang J, Petit JM, Laroche T, Magistretti PJ, Allaman I (2011) Role of the glyoxalase system in astrocyte-mediated neuroprotection. J Neurosci 31:18338–18352

    Article  PubMed  CAS  Google Scholar 

  • Bero AW, Yan P, Roh JH, Cirrito JR, Stewart FR, Raichle ME, Lee JM, Holtzman DM (2011) Neuronal activity regulates the regional vulnerability to amyloid-beta deposition. Nat Neurosci 14:750–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bigl M, Bleyl AD, Zedlick D, Arendt T, Bigl V, Eschrich K (1996) Changes of activity and isoenzyme pattern of phosphofructokinase in the brains of patients with Alzheimer’s disease. J Neurochem 67:1164–1171

    Article  CAS  PubMed  Google Scholar 

  • Bigl M, Bruckner MK, Arendt T, Bigl V, Eschrich K (1999) Activities of key glycolytic enzymes in the brains of patients with Alzheimer’s disease. J Neural Transm 106:499–511

    Article  CAS  PubMed  Google Scholar 

  • Blass JP (2001) Brain metabolism and brain disease: is metabolic deficiency the proximate cause of Alzheimer dementia? J Neurosci Res 66:851–856

    Article  CAS  PubMed  Google Scholar 

  • Bobba A, Atlante A, Azzariti A, Sgaramella G, Calissano P, Marra E (2004) Mitochondrial impairment induces excitotoxic death in cerebellar granule cells. Int J Mol Med 13:873–876

    CAS  PubMed  Google Scholar 

  • Bobba A, Petragallo VA, Marra E, Atlante A (2010) Alzheimer’s proteins, oxidative stress, and mitochondrial dysfunction interplay in a neuronal model of Alzheimer’s disease. Int J Alzheimers Dis. doi:10.4061/2010/621870

    PubMed  PubMed Central  Google Scholar 

  • Bobba A, Amadoro G, Valenti D, Corsetti V, Lassandro R, Atlante A (2013) Mitochondrial respiratory chain Complexes I and IV are impaired by β-amyloid via direct interaction and through Complex I-dependent ROS production, respectively. Mitochondrion 13:298–311

    Article  CAS  PubMed  Google Scholar 

  • Bobba A, Amadoro G, La Piana G, Calissano P, Atlante A (2015a) Glycolytic enzyme upregulation and numbness of mitochondrial activity characterize the early phase of apoptosis in cerebellar granule cells. Apoptosis 20:10–28

    Article  CAS  PubMed  Google Scholar 

  • Bobba A, Amadoro G, La Piana G, Petragallo VA, Calissano P, Atlante A (2015b) Glucose-6-phosphate tips the balance in modulating apoptosis in cerebellar granule cells. FEBS Lett 589:651–658

    Article  CAS  PubMed  Google Scholar 

  • Bolaños JP, Almeida A, Moncada S (2010) Glycolysis: a bioenergetic or a survival pathway? Trends Biochem Sci 35:145–149. (Review)

    Article  PubMed  CAS  Google Scholar 

  • Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C et al (2007) A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11:37–51

    Article  CAS  PubMed  Google Scholar 

  • Bouras C, Hof PR, Giannakopoulos P, Michel JP, Morrison JH (1994) Regional distribution of neurofibrillary tangles and senile plaques in the cerebral cortex of elderly patients: a quantitative evaluation of a one-year autopsy population from a geriatric hospital. Cereb Cortex 4:138–150

    Article  CAS  PubMed  Google Scholar 

  • Brooks GA (2009) Cell–cell and intracellular lactate shuttles. J Physiol 587:5591–5600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks WM, Lynch PJ, Ingle CC, Hatton A, Emson PC, Faull RL, Starkey MP (2007) Gene expression profiles of metabolic enzyme transcripts in Alzheimer’s disease. Brain Res 1127:127–135

    Article  CAS  PubMed  Google Scholar 

  • Cai Q, Tammineni P (2016) Mitochondrial aspects of synaptic dysfunction in Alzheimer’s disease. J Alzheimers Dis 1–17. doi:10.3233/JAD-160726

  • Caldwell CC, Yao J, Brinton RD (2015) Targeting the prodromal stage of Alzheimer’s disease: bioenergetic and mitochondrial opportunities. Neurotherapeutics 12:66–80

    Article  CAS  PubMed  Google Scholar 

  • Calissano P, Matrone C, Amadoro G (2009) Apoptosis and in vitro Alzheimer disease neuronal models. Commun Integra Biol 2:163–169

    Article  CAS  Google Scholar 

  • Canu N, Calissano P (2003) In vitro cultured neurons for molecular studies correlating apoptosis with events related to Alzheimer disease. Cerebellum 2:270–278

    Article  CAS  PubMed  Google Scholar 

  • Cardoso SM, Santos S, Swerdlow RH, Oliveira CR (2001) Functional mitochondria are required for amyloid beta-mediated neurotoxicity. FASEB J 15:1439–1441

    CAS  PubMed  Google Scholar 

  • Casley CS, Canevari L, Land JM, Clark JB, Sharpe MA (2002) Beta-amyloid inhibits integrated mitochondrial respiration and key enzyme activities. J Neurochem 80:91–100

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Zhong C (2013) Decoding Alzheimer’s disease from perturbed cerebral glucose metabolism: implications for diagnostic and therapeutic strategies. Prog Neurobiol 108:21–43

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Cohen ML, Lerner AJ, Yang Y, Herrup K (2010) DNA damage and cell cycle events implicate cerebellar dentate nucleus neurons as targets of Alzheimer’s disease. Mol Neurodegener 5:60

    Article  PubMed  PubMed Central  Google Scholar 

  • Correia-Melo C, Birch J, Passos JF (2016a) Powering senescence: the ugly side of mitochondria. Cell Cycle 11:1–2

    Google Scholar 

  • Correia-Melo C, Marques FD, Anderson R, Hewitt G, Hewitt R, Cole J, Carroll BM et al (2016b) Mitochondria are required for pro-ageing features of the senescent phenotype. EMBO J 35:724–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cunnane S, Nugent S, Roy M, Courchesne-Loyer A, Croteau E, Tremblay S, Castellano A, Pifferi F, Bocti C et al (2011) Brain fuel metabolism, aging, and Alzheimer’s disease. Nutrition 27:3–20

    Article  CAS  PubMed  Google Scholar 

  • Demetrius LA, Driver J (2013) Alzheimer’s as a metabolic disease. Biogerontology 14:641–649

    Article  CAS  PubMed  Google Scholar 

  • Demetrius LA, Driver JA (2015) Preventing Alzheimer’s disease by means of natural selection. J R Soc Interface 12:20140919. (Review)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Demetrius LA, Simon DK (2012) An inverse-Warburg effect and the origin of Alzheimer’s disease. Biogerontology 13:583–594

    Article  CAS  PubMed  Google Scholar 

  • Demetrius LA, Simon DK (2013) The inverse association of cancer and Alzheimer’s: a bioenergetic mechanism. J R Soc Interface 10:20130006

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dickson DW, Wertkin A, Mattiace LA, Fier E, Kress Y, Davies P et al (1990) Ubiquitin immunoelectron microscopy of dystrophic neurites in cerebellar senile plaques of Alzheimer’s disease. Acta Neuropathol 79:486–493

    Article  CAS  PubMed  Google Scholar 

  • D’Mello SR, Galli C, Ciotti T, Calissano P (1993) Induction of apoptosis in cerebellar granule neurons by low potassium: inhibition of death by insulin-like growth factor I and cAMP. Proc Natl Acad Sci USA 90:10989–10993

    Article  PubMed  PubMed Central  Google Scholar 

  • Drachman DA (2006) Aging of the brain, entropy, and Alzheimer disease. Neurology 67:1340–1352

    Article  CAS  PubMed  Google Scholar 

  • Driver JA (2014) Inverse association between cancer and neurodegenerative disease: review of the epidemiologic and biological evidence. Biogerontology 15:547–557. (Review)

    Article  CAS  PubMed  Google Scholar 

  • Driver JA, Beiser A, Au R, Kreger BE, Splansky GL, Kurth T, Kiel DP et al (2012) Inverse association between cancer and Alzheimer’s disease: results from the Framingham Heart Study. BMJ 344:e1442

    Article  PubMed  PubMed Central  Google Scholar 

  • Eckert A, Marques CA, Keil U, Schüssel K, Müller WE (2003) Increased apoptotic cell death in sporadic and genetic Alzheimer’s disease. Ann N Y Acad Sci 1010:604–609. (Review)

    Article  CAS  PubMed  Google Scholar 

  • Eckert A, Schulz KL, Rhein V, Götz J (2010) Convergence of amyloid-beta and tau pathologies on mitochondria in vivo. Mol Neurobiol 41:107–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fattoretti P, Balietti M, Casoli T, Giorgetti B, Di Stefano G, Bertoni-Freddari C, Lattanzio F, Sensi SL (2010) Decreased numeric density of succinic dehydrogenase-positive mitochondria in CA1 pyramidal neurons of 3xTg-AD mice. Rejuvenation Res 13:144–147

    Article  CAS  PubMed  Google Scholar 

  • Fuchsberger T, Martínez-Bellver S, Giraldo E, Teruel-Martí V, Lloret A, Viña J (2016) Aβ induces excitotoxicity mediated by APC/C-Cdh1 depletion that can be prevented by glutaminase inhibition promoting neuronal survival. Sci Rep 6:31158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujii S, Beutler E (1985) High glucose concentrations partially release hexokinase from inhibition by glucose 6-phosphate. Proc Natl Acad Sci USA 82:1552–1554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukutani Y, Cairns NJ, Rossor MN, Lantos PL (1996) Purkinje cell loss and astrocytosis in the cerebellum in familial and sporadic Alzheimer’s disease. Neurosci Lett 214:33–36

    Article  CAS  PubMed  Google Scholar 

  • Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4:891–899. (Review)

    Article  CAS  PubMed  Google Scholar 

  • Gibson GE, Sheu KF, Blass JP (1998) Abnormalities of mitochondrial enzymes in Alzheimer disease. J Neural Transm 105:855–870

    Article  CAS  PubMed  Google Scholar 

  • Gogvadze V, Zhivotovsky B, Orrenius S (2010) The Warburg effect and mitochondrial stability in cancer cells. Mol Aspects Med 31:60–74

    Article  CAS  PubMed  Google Scholar 

  • Harris RA, Tindale L, Lone A, Singh O, Macauley SL, Stanley M, Holtzman DM, Bartha R, Cumming RC (2016) Aerobic glycolysis in the frontal cortex correlates with memory performance in wild-type mice but not the APP/PS1 mouse model of cerebral amyloidosis. J Neurosci 36:1871–1878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto T, Hussien R, Brooks GA (2006) Colocalization of MCT1, CD147, and LDH in mitochondrial inner membrane of L6 muscle cells: evidence of a mitochondrial lactate oxidation complex. Am J Physiol 290:E1237–E1244

    CAS  Google Scholar 

  • Hashimoto T, Hussien R, Cho HS, Kaufer D, Brooks GA (2008) Evidence for the mitochondrial lactate oxidation complex in rat neurons: demonstration of an essential component of brain lactate shuttles. PLoS ONE 3:e2915

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heneka MT, Rodríguez JJ, Verkhratsky A (2010) Neuroglia in neurodegeneration. Brain Res Rev 63:189–211

    Article  CAS  PubMed  Google Scholar 

  • Herrero-Mendez A, Almeida A, Fernández E, Maestre C, Moncada S, Bolaños JP (2009) The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of a key glycolytic enzyme by APC/C-Cdh1. Nat Cell Biol 11:747–752

    Article  CAS  PubMed  Google Scholar 

  • Hsu PP, Sabatini DM (2008) Cancer cell metabolism: Warburg and beyond. Cell 134:703–707

    Article  CAS  PubMed  Google Scholar 

  • Hu H, Tan CC, Tan L, Yu JT (2016) A mitocentric view of Alzheimer’s disease. Mol Neurobiol. doi:10.1007/s12035-016-0117-7

    Google Scholar 

  • Ishii K, Sasaki M, Kitagaki H, Yamaji S, Sakamoto S, Matsuda K et al (1997) Reduction of cerebellar glucose metabolism in advanced Alzheimer’s disease. J Nucl Med 38:925–928

    CAS  PubMed  Google Scholar 

  • Iwangoff P, Armbruster R, Enz A, Meier-Ruge W (1980) Glycolytic enzymes from human autoptic brain cortex: normal aged and demented cases. Mech Ageing Dev 14:203–209

    Article  CAS  PubMed  Google Scholar 

  • Jack C Jr, Knopman D, Jagust W, Shaw L, Aisen P, Weiner M, Petersen R, Trojanowski J (2010) Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol 9:119–128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janson J, Laedtke T, Parisi JE, O’Brien P, Petersen RC, Butler PC (2004) Increased risk of type 2 diabetes in Alzheimer disease. Diabetes 53:474–481

    Article  CAS  PubMed  Google Scholar 

  • Kachel P, Trojanowicz B, Sekulla C, Prenzel H, Dralle H, Hoang-Vu C (2015) Phosphorylation of pyruvate kinase M2 and lactate dehydrogenase A by fibroblast growth factor receptor 1 in benign and malignant thyroid tissue. BMC Cancer 15:140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kapogiannis D, Mattson MP (2011) Disrupted energy metabolism and neuronal circuit dysfunction in cognitive impairment and Alzheimer’s disease. Lancet Neurol 10:187–198

    Article  CAS  PubMed  Google Scholar 

  • Karran E, De Strooper B (2016) The amyloid cascade hypothesis: are we poised for success or failure? J Neurochem 139(Suppl 2):237–252

    Article  CAS  PubMed  Google Scholar 

  • Karran E, Mercken M, De Strooper B (2011) The amyloid cascade hypothesis for Alzheimer’s disease: an appraisal for the development of therapeutics. Nat Rev Drug Discov 10:698–712

    Article  CAS  PubMed  Google Scholar 

  • Kopeikina KJ, Hyman BT, Spires-Jones TL (2012) Soluble forms of tau are toxic in Alzheimer’s disease. Transl Neurosci 3:223–233

    Article  PubMed  PubMed Central  Google Scholar 

  • Krako N, Magnifico MC, Arese M, Meli G, Forte E, Lecci A, Manca A, Giuffre` A, Mastronicola D, Sarti P, Cattaneo A (2013) Characterization of mitochondrial dysfunction in the 7PA2 cell model of Alzheimer’s disease. J Alzheimer’s Dis 37:747–758

    CAS  Google Scholar 

  • Kuhla B, Boeck K, Schmidt A, Ogunlade V, Arendt T, Münch G, Lüth HJ (2007) Age- and stage-dependent glyoxalase I expression and its activity in normal and Alzheimer’s disease brains. Neurobiol Aging 28:29–41

    Article  CAS  PubMed  Google Scholar 

  • Lemire J, Mailloux RJ, Appanna VD (2008) Mitochondrial lactate dehydrogenase is involved in oxidative-energy metabolism in human astrocytoma cells (CCF-STTG1). PLoS ONE 3:e1550

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liang WS, Reiman EM, Valla J, Dunckley T, Beach TG, Grover A, Niedzielko TL et al (2008) Alzheimer’s disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons. Proc Natl Acad Sci USA 105:4441–4446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luque FA, Jaffe SL (2009) The molecular and cellular pathogenesis of dementia of the Alzheimer’s type an overview. Int Rev Neurobiol 84:151–165

    Article  CAS  PubMed  Google Scholar 

  • Magistretti PJ, Allaman I (2015) A cellular perspective on brain energy metabolism and functional imaging. Neuron 86:883–901

    Article  CAS  PubMed  Google Scholar 

  • Manczak M, Reddy PH (2012) Abnormal interaction of VDAC1 with amyloid beta and phosphorylated tau causes mitochondrial dysfunction in Alzheimer’s disease. Hum Mol Genet 21:5131–5146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manczak M, Reddy PH (2013) RNA silencing of genes involved in Alzheimer’s disease enhances mitochondrial function and synaptic activity. Biochim Biophys Acta 1832:2368–2378

    Article  CAS  PubMed  Google Scholar 

  • Manczak M, Park BS, Jung Y, Reddy PH (2004) Differential expression of oxidative phosphorylation genes in patients with Alzheimer’s disease: implications for early mitochondrial dysfunction and oxidative damage. Neuromol Med 5:147–162

    Article  CAS  Google Scholar 

  • Manczak M, Anekonda TS, Henson E, Park BS, Quinn J, Reddy PH (2006) Mitochondria are a direct site of A beta accumulation in Alzheimer’s disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum Mol Genet 15:1437–1449

    Article  CAS  PubMed  Google Scholar 

  • Maragakis NJ, Rothstein JD (2006) Mechanisms of disease: astrocytes in neurodegenerative disease. Nat Clin Pract Neurol 2:679–689

    Article  CAS  PubMed  Google Scholar 

  • Marcus DL, Freedman ML (1997) Decreased brain glucose metabolism in microvessels from patients with Alzheimer’s disease. Ann NY Acad Sci 826:248–253

    Article  CAS  PubMed  Google Scholar 

  • Marcus DL, de Leon MJ, Goldman J, Logan J, Christman DR, Wolf AP, Fowler JS, Hunter K, Tsai J, Pearson J (1989) Altered glucose metabolism in microvessels from patients with Alzheimer’s disease. Ann Neurol 26:91–94

    Article  CAS  PubMed  Google Scholar 

  • Mattiace LA, Davies P, Yen SH, Dickson DW (1990) Microglia in cerebellar plaques in Alzheimer’s disease. Acta Neuropathol 80:493–498

    Article  CAS  PubMed  Google Scholar 

  • McFate T, Mohyeldin A, Lu H, Thakar J, Henriques J, Halim ND, Wu H, Schell MJ, Tsang TM, Teahan O, Zhou S et al (2008) Pyruvate dehydrogenase complex activity controls metabolic and malignant phenotype in cancer cells. J Biol Chem 283:22700–22708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morais VA, De Strooper B (2010) Mitochondria dysfunction and neurodegenerative disorders: cause or consequence. J Alzheimers Dis 20(Suppl. 2):S255–263

    Article  PubMed  Google Scholar 

  • Moreira PI, Carvalho C, Zhu X, Smith MA, Perry G (2010a) Mitochondrial dysfunction is a trigger of Alzheimer’s disease pathophysiology. Biochim Biophys Acta 1802:2–10

    Article  CAS  PubMed  Google Scholar 

  • Moreira PI, Zhu X, Wang X, Lee HG, Nunomura A, Petersen RB, Perry G, Smith MA (2010b) Mitochondria: a therapeutic target in neurodegeneration. Biochim Biophys Acta 1802:212–220

    Article  CAS  PubMed  Google Scholar 

  • Mortilla M, Sorbi S (1990) Hexokinases in Alzheimer’s disease. Medizina (Firenze) 10:168–169

    CAS  Google Scholar 

  • Nehlig A, Coles JA (2007) Cellular pathways of energy metabolism in the brain: is glucose used by neurons or astrocytes? Glia 55:1238–1250

    Article  PubMed  Google Scholar 

  • Newington JT, Pitts A, Chien A, Arseneault R, Schubert D, Cumming RC (2011) Amyloid beta resistance in nerve cell lines is mediated by the warburg effect. PLoS ONE 6:e19191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newington JT, Rappon T, Albers S, Wong DY, Rylett RJ, Cumming RC (2012) Overexpression of pyruvate dehydrogenase kinase 1 and lactate dehydrogenase A in nerve cells confers resistance to amyloid beta and other toxins by decreasing mitochondrial respiration and ROS production. J Biol Chem 287:37245–37258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newington JT, Harris RA, Cumming RC (2013) Reevaluating metabolism in Alzheimer’s disease from the perspective of the astrocyte-neuron lactate shuttle model. J Neurodeg Dis 2013:234572

    Google Scholar 

  • Newman LA, Korol DL, Gold PE (2011) Lactate produced by glycogenolysis in astrocytes regulates memory processing. PLoS ONE 6:e28427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicholls DG (2002) Mitochondrial function and dysfunction in the cell: its relevance to aging and aging-related disease. Int J Biochem Cell Biol 34:1372–1381. (Review)

    Article  CAS  PubMed  Google Scholar 

  • O’brien J, Kla KM, Hopkins IB, Malecki EA, McKenna MC (2007) Kinetic parameters and lactate dehydrogenase isozyme activities support possible lactate utilization by neurons. Neurochem Res 32:597–607

    Article  PubMed  CAS  Google Scholar 

  • Ossenkoppele R, van der Flier WM, Verfaillie SC, Vrenken H, Versteeg A, van Schijndel RA et al (2014) Long-term effects of amyloid, hypometabolism, and atrophy on neuropsychological functions. Neurology 82:1768–1775

    Article  CAS  PubMed  Google Scholar 

  • Pagani L, Eckert A (2011) Amyloid-beta interaction with mitochondria. Int J Alzheimers Dis 2011:925050

    PubMed  PubMed Central  Google Scholar 

  • Passarella S, de Bari L, Valenti D, Pizzuto R, Paventi G, Atlante A (2008) Mitochondria and l-lactate metabolism. FEBS Lett 582:3569–3576

    Article  CAS  PubMed  Google Scholar 

  • Pedros I, Patraca I, Martinez N, Petrov D, Sureda FX, Auladell C, Beas-Zarate C, Folch J (2016) Molecular links between early energy metabolism alterations and Alzheimer’s disease. Front Biosci (Landmark Ed) 21:8–19. (Review)

    Article  Google Scholar 

  • Pellerin L, Magistretti PJ (1994) Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl Acad Sci USA 91:10625–10629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pettegrew JW, Panchalingam K, Klunk WE, McClure RJ, Muenz LR (1994) Alterations of cerebral metabolism in probable Alzheimer’s disease: a preliminary study. Neurobiol Aging 15:117–132

    Article  CAS  PubMed  Google Scholar 

  • Poisnel G, Hérard AS, El Tannir El Tayara N, Bourrin E, Volk A, Kober F, Delatour B, Delzescaux T, Debeir T et al (2012) Increased regional cerebral glucose uptake in an APP/PS1 model of Alzheimer’s disease. Neurobiol Aging 33:1995–2005

    Article  CAS  PubMed  Google Scholar 

  • Price JL, Morris JC (1999) Tangles and plaques in nondemented aging and “preclinical” Alzheimer’s disease. Ann Neurol 45:358–368

    Article  CAS  PubMed  Google Scholar 

  • Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W, Ferri CP (2013) The global prevalence of dementia: a systematic review and metaanalysis. Alzheimers Dement 9:63.e–75.e

    Article  Google Scholar 

  • Proia P, Di Liegro CM, Schiera G, Fricano A, Di Liegro I (2016) Lactate as a metabolite and a regulator in the central nervous system. Int J Mol Sci. doi:10.3390/ijms17091450

    PubMed  PubMed Central  Google Scholar 

  • Rao VS, van Duijn CM, Connor-Lacke L, Cupples LA, Growdon JH, Farrer LA (1994) Multiple etiologies for Alzheimer disease are revealed by segregation analysis. Am J Hum Genet 55:991–1000

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy PH (2005) Amyloid precursor protein-mediated free radicals and oxidative damage: implications for the development and progression of Alzheimer’s disease. J Neurochem 96:1–13. (Review)

    Article  PubMed  CAS  Google Scholar 

  • Reddy PH (2013) Is the mitochondrial outer membrane protein VDAC1 therapeutic target for Alzheimer’s disease? Biochim Biophys Acta 1832:67–75

    Article  CAS  PubMed  Google Scholar 

  • Redjems-Bennani N, Jeandel C, Lefebvre E, Blain H, Vidailhet M, Guéant JL (1998) Abnormal substrate levels that depend upon mitochondrial function in cerebrospinal fluid from Alzheimer patients. Gerontology 44:300–304

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Rodriguez P, Fernandez E, Almeida A, Bolaños JP (2012) Excitotoxic stimulus stabilizes PFKFB3 causing pentose-phosphate pathway to glycolysis switch and neurodegeneration. Cell Death Differ 19:1582–1589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rohn TT, Head E (2008) Caspase activation in Alzheimer’s disease: early to rise and late to bed. Rev Neurosci 19:383–393

    Article  CAS  PubMed  Google Scholar 

  • Rossi D, Volterra A (2009) Astrocytic dysfunction: insights on the role in neurodegeneration. Brain Res Bull 80:224–232

    Article  CAS  PubMed  Google Scholar 

  • Santos RX, Correia SC, Wang X, Perry G, Smith MA, Moreira PI, Zhu X (2010) Alzheimer's disease: diverse aspects of mitochondrial malfunctioning. Int J Clin Exp Pathol 3:570–581

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scheltens P, Blennow K, Breteler MM, de Strooper B, Frisoni GB, Salloway S, Van der Flier WM (2016) Alzheimer’s disease. Lancet 388:505–517

    Article  CAS  PubMed  Google Scholar 

  • Schubert D (2005) Glucose metabolism and Alzheimer’s disease. Ageing Res Rev 4:240–257

    Article  CAS  PubMed  Google Scholar 

  • Schurr A (2006) Lactate: the ultimate cerebral oxidative energy substrate. J Cerebr Blood F Met 26:142–152

    Article  CAS  Google Scholar 

  • Schwab MA, Kölker S, van den Heuvel LP, Sauer S, Wolf NI, Rating D, Hoffmann GF, Smeitink JA, Okun JG (2005) Optimized spectrophotometric assay for the completely activated pyruvate dehydrogenase complex in fibroblasts. Clin Chem 51:151–160

    Article  CAS  PubMed  Google Scholar 

  • Selkoe DJ, Hardy J (2016) The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol Med 8:595–608. (Review)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo AY, Joseph AM, Dutta D, Hwang JC, Aris JP, Leeuwenburgh C (2010) New insights into the role of mitochondria in aging: mitochondrial dynamics and more. J Cell Sci 123:533–542

    Article  CAS  Google Scholar 

  • Sheu KFR, Kim YT, Blass JP, Weksler ME (1985) An immunochemical study of the pyruvate dehydrogenase deficit in Alzheimer’s disease brain. Ann Neurol 17:444–449

    Article  CAS  PubMed  Google Scholar 

  • Sims-Robinson C, Kim B, Rosko A, Feldman EL (2010) How does diabetes accelerate Alzheimer disease pathology? Nat Rev Neurol 6:551–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sofroniew MV, Vinters HV (2010) Astrocytes: biology and pathology. Acta Neuropathol 119:7–35

    Article  PubMed  Google Scholar 

  • Sorbi S, Bird ED, Blass JP (1983) Decreased pyruvate dehydrogenase complex activity in Huntington and Alzheimer brain. Ann Neurol 13:72–78

    Article  CAS  PubMed  Google Scholar 

  • Sorbi S, Mortilla M, Piacentini S, Tonini S, Amaducci L (1990) Altered hexokinase activity in skin cultured fibroblasts and leukocytes from Alzheimer’s disease patients. Neurosci Lett 117:165–168

    Article  CAS  PubMed  Google Scholar 

  • Soucek T, Cumming R, Dargusch R, Maher P, Schubert D (2003) The regulation of glucose metabolism by HIF-1 mediates a neuroprotective response to amyloid β peptide. Neuron 39:43–56

    Article  CAS  PubMed  Google Scholar 

  • Sun L, Shukair S, Naik TJ, Moazed F, Ardehali H (2008) Glucose phosphorylation and mitochondrial binding are required for the protective effects of hexokinases I and II. Mol Cell Biol 28:1007–1017

    Article  CAS  PubMed  Google Scholar 

  • Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH, Magistretti PJ, Alberini CM (2011) Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 144:810–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swerdlow RH, Burns JM, Khan SM (2010) The Alzheimer’s disease mitochondrial cascade hypothesis. J Alzh Dis 20(Suppl 2):S265–S279

    Article  CAS  Google Scholar 

  • Vaishnavi SN, Vlassenko AG, Rundle MM, Snyder AZ, Mintun MA, Raichle ME (2010) Regional aerobic glycolysis in the human brain. Proc Natl Acad Sci USA 107:17757–17762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verkhratsky A, Sofroniew MV, Messing A, deLanerolle NC, Rempe D, Rodríguez JJ, Nedergaard M (2012) Neurological diseases as primary gliopathies: a reassessment of neurocentrism. ASN Neuro 4:e00082

    Article  PubMed  PubMed Central  Google Scholar 

  • Vlassenko AG, Raichle ME (2015) Brain aerobic glycolysis functions and Alzheimer’s disease. Clin Transl Imaging 3:27–37

    Article  PubMed  Google Scholar 

  • Vlassenko AG, Vaishnavi SN, Couture L, Sacco D, Shannon BJ, Mach RH, Morris JC, Raichle ME, Mintun MA (2010) Spatial correlation between brain aerobic glycolysis and amyloid-beta (Abeta) deposition. Proc Natl Acad Sci USA 107:17763–17767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warburg O (1956) On respiratory impairment in cancer cells. Science 124:269–270

    CAS  PubMed  Google Scholar 

  • Wegiel J, Wisniewski HM, Dziewiatkowski J, Badmajew E, Tarnawski M, Reisberg B et al (1999) Cerebellar atrophy in Alzheimer’s disease-clinicopathological correlations. Brain Res 818:41–50

    Article  CAS  PubMed  Google Scholar 

  • Xie J, Wang BS, Yu DH, Lu Q, Ma J, Qi H, Fang C, Chen HZ (2011) Dichloroacetate shifts the metabolism from glycolysis to glucose oxidation and exhibits synergistic growth inhibition with cisplatin in HeLa cells. Int J Oncol 38:409–417

    CAS  PubMed  Google Scholar 

  • Xu RH, Pelicano H, Zhou Y, Carew JS, Feng L, Bhalla KN, Keating MJ, Huang P (2005) Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res 65:613–621

    Article  CAS  PubMed  Google Scholar 

  • Yao J, Irwin RW, Zhao L, Nilsen J, Hamilton RT, Brinton RD (2009) Mitochondrial bioenergetic deficit precedes Alzheimer’s pathology in female mouse model of Alzheimer’s disease. Proc Natl Acad Sci USA 106:14670–14675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Atlante.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atlante, A., de Bari, L., Bobba, A. et al. A disease with a sweet tooth: exploring the Warburg effect in Alzheimer’s disease. Biogerontology 18, 301–319 (2017). https://doi.org/10.1007/s10522-017-9692-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-017-9692-x

Keywords

Navigation