Biogerontology

, Volume 18, Issue 4, pp 711–715 | Cite as

Biological ageing and clinical consequences of modern technology

Opinion Article

Abstract

The pace of technology is steadily increasing, and this has a widespread effect on all areas of health and society. When we interact with this technological environment we are exposed to a wide variety of new stimuli and challenges, which may modulate the stress response and thus change the way we respond and adapt. In this Opinion paper I will examine certain aspects of the human–computer interaction with regards to health and ageing. There are practical, everyday effects which also include social and cultural elements. I will discuss how human evolution may be affected by this new environmental change (the hormetic immersion in a virtual/technological environment). Finally, I will also explore certain biological aspects which have direct relevance to the ageing human. By embracing new technologies and engaging with a techno-social ecosystem (which is no longer formed by several interacting species, but by just two main elements: humans and machines), we may be subjected to beneficial hormetic effects, which upregulate the stress response and modulate adaptation. This is likely to improve overall health as we age and, as I speculate here, may also result in the reduction of age-related dysfunction.

Keywords

Information exposure Human–computer interaction Hormesis Technology and culture Clinical ageing Indispensable soma hypothesis 

References

  1. Adriani P (2017) Exaptation, serendipity and aging. Mech Ageing Dev. In pressGoogle Scholar
  2. Allen G, Eriksson AW, Fellman J, Parisi P, Vandenberg SG (1992) Twinning and the r/K reproductive strategy: a critique of Rushton’s theory. Acta Genet Med Gemellol (Roma) 41(1):73–83CrossRefGoogle Scholar
  3. Brickman AM, Khan UA, Provenzano FA, Yeung LK, Suzuki W, Schroeter H, Wall M, Sloan RP, Small SA (2014) Enhancing dentate gyrus function with dietary flavanols improves cognition in older adults. Nat Neurosci 17:1798–1803. doi:10.1038/nn.3850 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Brossette SE, Sprague AP, Hardin JM, Waites KB, Jones WT, Moser SA (1998) Association rules and data mining in hospital infection control and public health surveillance. J Am Med Inform Assoc 5(4):373–381CrossRefPubMedPubMedCentralGoogle Scholar
  5. Caldwell JC, Orubuloye IO, Caldwell P (1992) Fertility decline in Africa: a new type of transition? Popul Dev Rev 18(2):211–242CrossRefGoogle Scholar
  6. Crane M (2012) 12 Worst medical technology dangers http://www.medscape.com/features/slideshow/tech-dangers. Accessed 10 Jan 2017
  7. Dallas E (2013) Having a heart attack or stroke? Your iPhone knows http://www.everydayhealth.com/heart-health/having-a-heart-attack-or-stroke-your-iphone-knows-6152.aspx. Accessed 10 Jan 2017
  8. Galow LV, Schneider J, Lewen A, Ta TT, Papageorgiou IE, Kann O (2014) Energy substrates that fuel fast neuronal network oscillations. Front Neurosci 8:398. doi:10.3389/fnins.2014.00398 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Getz WM (1993) 0 Metaphysiological and evolutionary dynamics of populations exploiting constant and interactive resources—r-K selection revisited. Evol Ecol 7(3):287–305. doi:10.1007/BF01237746 CrossRefGoogle Scholar
  10. Giwercman A, Giwercman YL (2011) Environmental factors and testicular function. Best Pract Res Clin Endocrinol Metab 25(2):391–402. doi:10.1016/j.beem.2010.09.011 CrossRefPubMedGoogle Scholar
  11. Glaser T, Opitz T, Kischlat T et al (2008) Adult germ line stem cells as a source of functional neurons and glia. Stem Cells 26(9):2434–2443CrossRefPubMedGoogle Scholar
  12. Haas GP, Delongchamps N, Brawley OW, Wang CY, de la Roza G (2008) The worldwide epidemiology of prostate cancer: perspectives from autopsy studies. Can J Urol 15(1):3866–3871PubMedPubMedCentralGoogle Scholar
  13. Handelsman DJ, Cooper TG (2013) Falling sperm counts and global estrogenic pollution: what have we learned over 20 years? Asian J Androl 15(2):159–161. doi:10.1038/aja.2013.8 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hara T (2008) Increasing childlessness in Germany and Japan: toward a childless society? Int J Jpn Sociol 17:42–62. doi:10.1111/j.1475-6781.2008.00110.x CrossRefGoogle Scholar
  15. Heylighen F (2016) From quantity to quality of life: r-K selection and human development. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.89.3618. Accessed 2 Jan 2017
  16. Jiang S, Zhu X, Wang L (2015) EPPS: efficient and privacy-preserving personal health information sharing in mobile healthcare social networks. Sensors 15(9):22419–22438. doi:10.3390/s150922419 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Kanazawa S (2012) The intelligence paradox: why the intelligent choice isn’t always the smart one. Wiley, HobokenGoogle Scholar
  18. Kann O, Papageorgiou IE, Draguhn A (2014) Highly energized inhibitory interneurons are a central element for information processing in cortical networks. J Cereb Blood Flow Metab 34(8):1270–1282. doi:10.1038/jcbfm.2014.104 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Kim BJ, Lee YA, Kim KJ et al (2015) Effects of paracrine factors on CD24 expression and neural differentiation of male germline stem cells. Int J Mol Med 36(1):255–262PubMedGoogle Scholar
  20. Kyriazis M (2014) Reversal of informational entropy and the acquisition of germ-like immortality by somatic cells. Curr Aging Sci 7(1):9–16CrossRefPubMedGoogle Scholar
  21. Kyriazis M (2015) Systems neuroscience in focus: from the human brain to the global brain? Front Syst Neurosci 9:7. doi:10.3389/fnsys.2015.00007 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kyriazis M (2016a) A cognitive-cultural segregation and the three stages of aging. Curr Aging Sci 9(2):81–86CrossRefPubMedGoogle Scholar
  23. Kyriazis M (2016b) A ‘war of trade-offs’ between the soma and the germ line. In challenging ageing: the anti-senescence effects of hormesis, environmental enrichment, and information exposure 2016. Bentham Science Publishers, SharjahGoogle Scholar
  24. Kyriazis M (2016c) Engagement with a technological environment for ongoing homoeostasis maintenance. In challenging ageing: the anti-senescence effects of hormesis, environmental enrichment, and information exposure 2016. Bentham Science Publishers, SharjahGoogle Scholar
  25. Last C (2014) Human evolution, life history theory, and the end of biological reproduction. Curr Aging Sci 7(1):17–24CrossRefPubMedGoogle Scholar
  26. Levi-Ferber M, Salzberg Y, Safra M, Haviv-Chesner A, Bülow HE, Henis-Korenblit (2014) It’s all in your mind: determining germ cell fate by Neuronal IRE-1 in C. elegans. PLoS Genet 10(10):e1004747CrossRefPubMedPubMedCentralGoogle Scholar
  27. Levi-Ferber M, Gian H, Dudkevich R, Henis-Korenblit S (2015) Transdifferentiation mediated tumor suppression by the endoplasmic reticulum stress sensor IRE-1 in C. elegans. Elife 4:e08005. doi:10.7554/eLife.08005 CrossRefPubMedCentralGoogle Scholar
  28. Li G, Zhang D (2016) Brain-computer interface controlled cyborg: establishing a functional information transfer pathway from human brain to cockroach brain. PLoS ONE 11(3):e0150667. doi:10.1371/journal.pone.0150667 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Mahmoudi R, Mortazavi SMJ, Safari S, Nikseresht M, Mozdarani H, Jafari M (2015) Microwave electromagnetic radiations emitted from common Wi-Fi routers reduce sperm count and motility. Int J Radiat Res. https://www.researchgate.net/publication/277248261_Microwave_Electromagnetic_Radiations_Emitted_from_Common_Wi-Fi_Routers_Reduce_Sperm_Count_and_Motility. Accessed 2 January 2017
  30. Mason P (2017) Another stage of development: biological degeneracy and the study of bodily ageing. Mech Ageing Dev. In pressGoogle Scholar
  31. Mortazavi SMJ, Tavassoli A, Ranjbar F, Moammaiee P (2010) Effects of laptop computers’ electromagnetic field on sperm quality. J Reprod Infertil 11(4):251–258Google Scholar
  32. Murdoch TB, Detsky AS (2013) The inevitable application of big data to health care. JAMA 309(13):1351–1352. doi:10.1001/jama.2013.393 CrossRefPubMedGoogle Scholar
  33. O’Doherty JE, Lebedev MA, Ifft PJ, Zhuang KZ, Shokur S, Bleuler H, Nicolelis MA (2011) Active tactile exploration using a brain-machine-brain interface. Nature 479(7372):228–231. doi:10.1038/nature10489 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Oizumi R, Kuniya T, Enatsu Y (2016) Reconsideration of r/K selection theory using stochastic control theory and nonlinear structured population models. PLoS ONE 11(6):e0157715. doi:10.1371/journal.pone.0157715 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Prause MC, Berchtold LA, Urizar AI, Hyldgaard Trauelsen AM, Billestrup N, Mandrup-Poulsen T, Størling J (2015) TRAF2 mediates JNK and STAT3 activation in response to IL-1β and IFNγ and facilitates apoptotic death of insulin-producing β-cells. Mol Cell Endocrinol 420:24–36CrossRefPubMedGoogle Scholar
  36. Raefsky SM, Mattson MP (2016) Adaptive responses of neuronal mitochondria to bioenergetic challenges: roles in neuroplasticity and disease resistance. Free Radic Biol Med 29(102):203–216. doi:10.1016/j.freeradbiomed.2016.11.045 Google Scholar
  37. Rattan SI (2014) Molecular gerontology: from homeodynamics to hormesis. Curr Pharm Des 20(18):3036–3039CrossRefPubMedGoogle Scholar
  38. Rowland NC, Breshears J, Chang EF (2013) Neurosurgery and the dawning age of brain–machine interfaces. Surg Neurol Int 4(Suppl 1):S11–S14. doi:10.4103/2152-7806.109182 PubMedPubMedCentralGoogle Scholar
  39. Shanmugalingam T, Soultati A, Chowdhury S, Rudman S, Van Hemelrijck M (2013) Global incidence and outcome of testicular cancer. Clin Epidemiol 5:417–427. doi:10.2147/CLEP.S34430 PubMedPubMedCentralGoogle Scholar
  40. Sharpe RM (2012) Sperm counts and fertility in men: a rocky road ahead. EMBO Rep 13(5):398–403. doi:10.1038/embor.2012.50 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Streckfuss-Bömeke K, Vlasov A, Hülsmann S et al (2009) Generation of functional neurons and glia from multipotent adult mouse germ-line stem cells. Stem Cell Res 2(2):139–154CrossRefPubMedGoogle Scholar
  42. Tabatabaie V, Atzmon G, Rajpathak SN, Freeman R, Barzilai N, Crandall J (2011) Exceptional longevity is associated with decreased reproduction. Aging 3(12):1202–1205CrossRefPubMedPubMedCentralGoogle Scholar
  43. Teichert AM, Pereira S, Coles B et al (2014) The neural stem cell lineage reveals novel relationships among spermatogonial germ stem cells and other pluripotent stem cells. Stem Cells Dev 23(7):767–778CrossRefPubMedGoogle Scholar
  44. Vinogradov AE (1998) Male reproductive strategy and decreased longevity. Acta Biotheor 46(2):157–160CrossRefPubMedGoogle Scholar
  45. Wang X, Chen T, Zhang Y, Li B, Xu Q, Song C (2015) Isolation and culture of pig spermatogonial stem cells and their in vitro differentiation into neuron-like cells and adipocytes. Int J Mol Sci 16(11):26333–26346CrossRefPubMedPubMedCentralGoogle Scholar
  46. Xu L, Scheenen WJ, Roubos EW (2012) Kozicz T Peptidergic Edinger-Westphal neurons and the energy-dependent stress response. Gen Comp Endocrinol 177(3):296–304. doi:10.1016/j.ygcen.2011.11.039 CrossRefPubMedGoogle Scholar
  47. Yang H, Liu Y, Hai Y et al (2015) Efficient conversion of spermatogonial stem cells to phenotypic and functional dopaminergic neurons via the PI3 K/Akt and P21/Smurf2/Nolz1 pathway. Mol Neurobiol 52(3):1654–1669CrossRefPubMedGoogle Scholar
  48. Zakharov SV, Ivanova EI (2016). Fertility decline and recent changes in Russia: On the threshold of the second demographic transition http://www.rand.org/pubs/conf_proceedings/CF124/CF124.chap2.html. Accessed 20 Dec 2016

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.ELPIs Foundation for Indefinite LifespansLondonUK

Personalised recommendations