Biogerontology

, Volume 18, Issue 2, pp 253–262 | Cite as

Middle age enhances expression of innate immunity genes in a female mouse model of pulmonary fibrosis

  • Marcin Golec
  • Matthias Wielscher
  • Marta Kinga Lemieszek
  • Klemens Vierlinger
  • Czesława Skórska
  • Sophia Huetter
  • Jolanta Sitkowska
  • Barbara Mackiewicz
  • Anna Góra-Florek
  • Rolf Ziesche
  • Hagai Yanai
  • Vadim E. Fraifeld
  • Janusz Milanowski
  • Jacek Dutkiewicz
Research Article

Abstract

The lungs are highly sensitive to tissue fibrosis, with a clear age-related component. Among the possible triggers of pulmonary fibrosis are repeated inhalations of fine organic particles. How age affects this response, is still far from being fully understood. We examined the impact of middle-age on gene expression in pulmonary fibrosis, using the novel “inhalation challenge set” mouse model. Our results demonstrate that the response of female mice to exposure of Pantoea agglomerans extract primarily involves various immune-related pathways and cell–cell/cell–extracellular matrix interactions. We found that middle-age had a strong effect on the response to the P. agglomerans-induced lung fibrosis, featured by a more rapid response and increased magnitude of expression changes. Genes belonging to innate immunity pathways (such as the TLR signaling and the NK-cell mediated cytotoxicity) were particularly up-regulated in middle-aged animals, suggesting that they may be potential targets for the treatment of pulmonary fibrosis caused by inhalations of organic particles. Our analysis also highlights the relevance of the “inhalation challenge set” mouse model to lung aging and related pathology.

Keywords

Aging Gene expression Pulmonary fibrosis Hypersensitivity pneumonitis Mice 

Supplementary material

10522_2017_9678_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 13 kb)
10522_2017_9678_MOESM2_ESM.png (359 kb)
Supplementary material 2 (PNG 358 kb)
10522_2017_9678_MOESM3_ESM.docx (20 kb)
Supplementary material 3 (DOCX 20 kb)
10522_2017_9678_MOESM4_ESM.docx (127 kb)
Supplementary material 4 (DOCX 127 kb)
10522_2017_9678_MOESM5_ESM.docx (18 kb)
Supplementary material 5 (DOCX 17 kb)
10522_2017_9678_MOESM6_ESM.tif (481 kb)
Supplementary material 6 (TIFF 481 kb)
10522_2017_9678_MOESM7_ESM.tif (6.4 mb)
Supplementary material 7 (TIFF 6573 kb)

References

  1. Arras M, Louahed J, Heilier JF, Delos M, Brombacher F, Renauld JC, Lison D, Huaux F (2005) IL-9 protects against bleomycin-induced lung injury: involvement of prostaglandins. Am J Pathol 166:107–115CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622. doi:10.1373/clinchem.2008.112797 CrossRefPubMedGoogle Scholar
  3. Fulop T, Dupuis G, Baehl S, Le Page A, Bourgade K, Frost E, Witkowski JM, Pawelec G, Larbi A, Cunnane S (2016) From inflamm-aging to immune-paralysis: a slippery slope during aging for immune-adaptation. Biogerontology 17:147–157. doi:10.1007/s10522-015-9615-7 CrossRefPubMedGoogle Scholar
  4. Golec M, Skorska C, Lemieszek M, Dutkiewicz J (2009) A novel inhalation challenge set to study animal model of allergic alveolitis. Ann Agric Environ Med 16:173–175PubMedGoogle Scholar
  5. Golec M, Lemieszek MK, Skorska C, Sitkowska J, Zwolinski J, Mackiewicz B, Gora-Florek A, Milanowski J, Dutkiewicz J (2015) Cathelicidin related antimicrobial peptide, laminin, Toll-like receptors and chemokines levels in experimental hypersensitivity pneumonitis in mice. Pathol Biol (Paris) 63:130–135. doi:10.1016/j.patbio.2015.03.002 CrossRefGoogle Scholar
  6. Hecker L, Logsdon NJ, Kurundkar D, Kurundkar A, Bernard K, Hock T, Meldrum E, Sanders YY, Thannickal VJ (2014) Reversal of persistent fibrosis in aging by targeting Nox4-Nrf2 redox imbalance. Sci Transl Med 6:231ra47. doi:10.1126/scitranslmed.3008182 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Hekimi S (2006) How genetic analysis tests theories of animal aging. Nat Genet 38:985–991. doi:10.1038/ng1881 CrossRefPubMedGoogle Scholar
  8. Kapetanaki MG, Mora AL, Rojas M (2013) Influence of age on wound healing and fibrosis. J Pathol 229:310–322. doi:10.1002/path.4122 CrossRefPubMedGoogle Scholar
  9. Kral JB, Kuttke M, Schrottmaier WC, Birnecker B, Warszawska J, Wernig C, Paar H, Salzmann M, Sahin E, Brunner JS, Osterreicher C, Knapp S, Assinger A, Schabbauer G (2016) Sustained PI3 K Activation exacerbates BLM-induced Lung Fibrosis via activation of pro-inflammatory and pro-fibrotic pathways. Sci Rep 6:23034. doi:10.1038/srep23034 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Lacasse Y, Cormier Y (2006) Hypersensitivity pneumonitis. Orphanet J Rare Dis 1:25. doi:10.1186/1750-1172-1-25 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Lemieszek M, Chilosi M, Golec M, Skorska C, Huaux F, Yakoub Y, Pastena C, Daniele I, Cholewa G, Sitkowska J, Lisowska W, Zwolinski J, Milanowski J, Mackiewicz B, Gora A, Dutkiewicz J (2011) Mouse model of hypersensitivity pneumonitis after inhalation exposure to different microbial antigens associated with organic dusts. Ann Agric Environ Med 18:159–168PubMedGoogle Scholar
  12. Lemieszek MK, Chilosi M, Golec M, Skorska C, Dinnyes A, Mashayekhi K, Vierlinger K, Huaux F, Wielscher M, Hofner M, Yakoub Y, Pastena C, Daniele I, Cholewa G, Sitkowska J, Lisowska W, Zwolinski J, Milanowski J, Mackiewicz B, Gora-Florek A, Ziesche R, Dutkiewicz J (2013) Age influence on hypersensitivity pneumonitis induced in mice by exposure to Pantoea agglomerans. Inhal Toxicol 25:640–650. doi:10.3109/08958378.2013.827284 CrossRefPubMedGoogle Scholar
  13. Lemieszek MK, Dutkiewicz J, Golec M, Chilosi M, Skorska C, Huaux F, Pastena C, Pedica F, Sitkowska J, Lisowska W, Cholewa G, Zwolinski J, Mackiewicz B, Gora-Florek A, Ziesche R, Milanowski J (2015) Age influence on mice lung tissue response to Aspergillus fumigatus chronic exposure. Ann Agric Environ Med 22:69–75. doi:10.5604/12321966.1141371 CrossRefPubMedGoogle Scholar
  14. Limjunyawong N, Mitzner W, Horton MR (2014) A mouse model of chronic idiopathic pulmonary fibrosis. Physiol Rep 2:e00249. doi:10.1002/phy2.249 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Misra V, Lee H, Singh A, Huang K, Thimmulappa RK, Mitzner W, Biswal S, Tankersley CG (2007) Global expression profiles from C57BL/6J and DBA/2J mouse lungs to determine aging-related genes. Physiol Genomics 31:429–440. doi:10.1152/physiolgenomics.00060.2007 CrossRefPubMedGoogle Scholar
  16. Rattan SI (2015) Biology of ageing: principles, challenges and perspectives. Rom J Morphol Embryol 56:1251–1253PubMedGoogle Scholar
  17. Redente EF, Jacobsen KM, Solomon JJ, Lara AR, Faubel S, Keith RC, Henson PM, Downey GP, Riches DW (2011) Age and sex dimorphisms contribute to the severity of bleomycin-induced lung injury and fibrosis. Am J Physiol Lung Cell Mol Physiol 301:L510–L518. doi:10.1152/ajplung.00122.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Rockey DC, Bell PD, Hill JA (2015) Fibrosis–a common pathway to organ injury and failure. N Engl J Med 373:96. doi:10.1056/NEJMc1504848 CrossRefPubMedGoogle Scholar
  19. Shi K, Jiang J, Ma T, Xie J, Duan L, Chen R, Song P, Yu Z, Liu C, Zhu Q, Zheng J (2014) Pathogenesis pathways of idiopathic pulmonary fibrosis in bleomycin-induced lung injury model in mice. Respir Physiol Neurobiol 190:113–117. doi:10.1016/j.resp.2013.09.011 CrossRefPubMedGoogle Scholar
  20. Sikora E (2015) Activation-induced and damage-induced cell death in aging human T cells. Mech Ageing Dev 151:85–92. doi:10.1016/j.mad.2015.03.011 CrossRefPubMedGoogle Scholar
  21. Solaymani-Dodaran M, West J, Smith C, Hubbard R (2007) Extrinsic allergic alveolitis: incidence and mortality in the general population. QJM 100:233–237. doi:10.1093/qjmed/hcm008 CrossRefPubMedGoogle Scholar
  22. Sterclova M, Paluch P, Skibova J, Vasakova M (2015) Influence of age on manifestation, VC and TLCO values, and bronchoalveolar lavage cell counts of sarcoidosis and extrinsic allergic alveolitis. Clin Respir J 9:39–44. doi:10.1111/crj.12102 CrossRefPubMedGoogle Scholar
  23. Thannickal VJ (2013) Mechanistic links between aging and lung fibrosis. Biogerontology 14:609–615. doi:10.1007/s10522-013-9451-6 CrossRefPubMedGoogle Scholar
  24. Vazquez M, Nogales-Cadenas R, Arroyo J, Botias P, Garcia R, Carazo JM, Tirado F, Pascual-Montano A, Carmona-Saez P (2010) MARQ: an online tool to mine GEO for experiments with similar or opposite gene expression signatures. Nucleic Acids Res 38:W228–W232. doi:10.1093/nar/gkq476 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Volkova M, Zhang Y, Shaw AC, Lee PJ (2012) The role of Toll-like receptors in age-associated lung diseases. J Gerontol A 67:247–253. doi:10.1093/gerona/glr226 CrossRefGoogle Scholar
  26. Wang L, Yang L, Debidda M, Witte D, Zheng Y (2007) Cdc42 GTPase-activating protein deficiency promotes genomic instability and premature aging-like phenotypes. Proc Natl Acad Sci USA 104:1248–1253. doi:10.1073/pnas.0609149104 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Wielscher M, Pulverer W, Peham J, Hofner M, Rappaport CF, Singer C, Jungbauer C, Nohammer C, Weinhausel A (2011) Methyl-binding domain protein-based DNA isolation from human blood serum combines DNA analyses and serum-autoantibody testing. BMC Clin Pathol 11:11. doi:10.1186/1472-6890-11-11 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Wielscher M, Liou W, Pulverer W, Singer CF, Rappaport-Fuerhauser C, Kandioler D, Egger G, Weinhausel A (2013) Cytosine 5-hydroxymethylation of the LZTS1 gene is reduced in breast cancer. Transl Oncol 6:715–721CrossRefPubMedPubMedCentralGoogle Scholar
  29. Yanai H, Shteinberg A, Porat Z, Budovsky A, Braiman A, Ziesche R, Fraifeld VE (2015) Cellular senescence-like features of lung fibroblasts derived from idiopathic pulmonary fibrosis patients. Aging (Albany NY) 7:664–672. doi:10.18632/aging.100807 CrossRefGoogle Scholar
  30. Yanai H, Budovsky A, Tacutu R, Barzilay T, Abramovich A, Ziesche R, Fraifeld VE (2016a) Tissue repair genes: the TiRe database and its implication for skin wound healing. Oncotarget 7:21145–21155. doi:10.18632/oncotarget.8501 PubMedPubMedCentralGoogle Scholar
  31. Yanai H, Lumenta DB, Vierlinger K, Hofner M, Kitzinger HB, Kamolz LP, Nohammer C, Chilosi M, Fraifeld VE (2016b) Middle age has a significant impact on gene expression during skin wound healing in male mice. Biogerontology 17:763–770. doi:10.1007/s10522-016-9650-z CrossRefPubMedGoogle Scholar
  32. Ziesche R, Golec M, Samaha E (2013) The RESOLVE concept: approaching pathophysiology of fibroproliferative disease in aged individuals. Biogerontology 14:679–685. doi:10.1007/s10522-013-9453-4 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Marcin Golec
    • 1
  • Matthias Wielscher
    • 2
  • Marta Kinga Lemieszek
    • 1
  • Klemens Vierlinger
    • 2
  • Czesława Skórska
    • 1
  • Sophia Huetter
    • 2
  • Jolanta Sitkowska
    • 1
  • Barbara Mackiewicz
    • 3
  • Anna Góra-Florek
    • 1
  • Rolf Ziesche
    • 4
  • Hagai Yanai
    • 5
  • Vadim E. Fraifeld
    • 5
  • Janusz Milanowski
    • 1
    • 3
  • Jacek Dutkiewicz
    • 1
  1. 1.Institute of Rural HealthLublinPoland
  2. 2.AIT - Austrian Institute of TechnologyViennaAustria
  3. 3.Department of Pneumonology, Oncology and AllergologyMedical University of LublinLublinPoland
  4. 4.Department of Internal Medicine II, Clinical Division of Pulmonary MedicineMedical University of ViennaViennaAustria
  5. 5.The Shraga Segal Department of Microbiology, Immunology and Genetics, Center for Multidisciplinary Research on AgingBen-Gurion University of the NegevBeer ShevaIsrael

Personalised recommendations