Skip to main content

Advertisement

Log in

Daily NO rhythms in peripheral clocks in aging male Wistar rats: protective effects of exogenous melatonin

  • Research Article
  • Published:
Biogerontology Aims and scope Submit manuscript

Abstract

In mammals suprachiasmatic nucleus (SCN), acts as a light entrainable master clock and by generation of temporal oscillations regulates the peripheral organs acting as autonomous clocks resulting in overt behavioral and physiological rhythms. SCN also controls synthesis and release of melatonin (hormonal message for darkness) from pineal. Nitric Oxide (NO) acts as an important neurotransmitter in generating the phase shifts of circadian rhythms and participates in sleep–wake processes, maintenance of vascular tone as well as signalling and regulating inflammatory processes. Aging is associated with disruption of circadian timing system and decline in endogenous melatonin leading to several physiological disorders. Here we report the effect of aging on NO daily rhythms in various peripheral clocks such as kidney, intestine, liver, heart, lungs and testis. NO levels were measured at zeitgeber time (ZT) 0, 6, 12 and 18 in these tissues using Griess assay in male Wistar rats. Aging resulted in alteration of NO levels as well as phase of NO in both 12 and 24 months groups. Correlation analysis demonstrated loss of stoichiometric interaction between the various peripheral clocks with aging. Age induced alterations in NO daily rhythms were found to be most significant in liver and, interestingly least in lungs. Neurohormone melatonin, an endogenous synchroniser and an antiaging agent decreases with aging. We report further differential restoration with exogenous melatonin administration of age induced alterations in NO daily rhythms and mean levels in kidney, intestine and liver and the stoichiometric interactions between the various peripheral clocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agostino PV, Ferreyra GA, Murada AD, Watanabe Y, Golombeka DA (2004) Diurnal, circadian and photic regulation of calcium/calmodulin-dependent kinase II and neuronal nitric oxide synthase in the hamster suprachiasmatic nuclei. Neurochem Int 44:617–625

    Article  CAS  PubMed  Google Scholar 

  • Albrecht URS (2012) Timing to perfection: the biology of central and peripheral circadian clocks. Neuron 74:246–260

    Article  CAS  PubMed  Google Scholar 

  • Anea CB, Cheng B, Sharma S, Kumar S, Caldwell RW, Yao L, Ali MI, Merloiu AM, Stepp DW, Black SM, Fulton DJR, Rudic RD (2012) Increased superoxide and endothelial no synthase uncoupling in blood vessels of bmal1-knockout mice. Circ Res 111:1157–1165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Araujo AB, Wittert GA (2011) Endocrinology of the aging male. Best Pract Res Clin Endocrinol Metab 25:303–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baidanoff FM, Plano SA, Doctorovich F, Suárez SA, Golombek DA, Chiesa JJ (2014) N-nitrosomelatonin enhances photic synchronization of mammalian circadian rhythms. J Neurochem 129:60–71

    Article  CAS  PubMed  Google Scholar 

  • Bailey SM, Udoh US, Young ME (2014) Circadian regulation of metabolism. J Endocrinol 222:75–96

    Article  Google Scholar 

  • Baylis C (2012) Sexual dimorphism: the aging kidney, involvement of nitric oxide deficiency, and angiotensin II overactivity. J Gerontol A 67:1365–1372

    Article  Google Scholar 

  • Bolduc V, Thorin-Trescases N, Thorin E (2013) Endothelium-dependent control of cerebrovascular functions through age: exercise for healthy cerebrovascular aging. Am J Physiol Heart Circ Physiol 305:620–633

    Article  Google Scholar 

  • Bryan SN, Grisham MB (2007) Methods to detect nitric oxide and its metabolites in biological samples. Free Radic Biol Med 43:645–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardinali DP, Hardeland R (2016) Inflammaging, metabolic syndrome and melatonin: a call for treatment studies. Neuroendocrinology. doi:10.1159/000446543

    PubMed  Google Scholar 

  • Cau SBA, Carneiro FS, Tostes RC (2012) Differential modulation of nitric oxide synthases in aging: therapeutic opportunities. Front Physiol 3:218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cespuglio R, Amrouni D, Meiller A, Buguet A, Sauvigné SG (2012) Nitric oxide in the regulation of the sleep-wake states. Sleep Med Rev 16:265–279

    Article  PubMed  Google Scholar 

  • Chou TZ, Yen MH, Li CY, Ding YA (1998) Alterations of nitric oxide synthase expression with aging and hypertension in rats. Hypertension 31:643–648

    Article  CAS  PubMed  Google Scholar 

  • Chunjin L, Zhou X (2015) Melatonin and male reproduction. Clin Chim Acta 446:175–180

    Article  Google Scholar 

  • Contini Mdel C, Millen N, Gonzalez M, Mahieu S (2011) Melatonin prevents oxidative stress in ovariectomized rats treated with aluminium. Biol Trace Elem Res 144:924–943

    Article  PubMed  Google Scholar 

  • Curtis AM, Bellet MM, Sassone-Corsi P, O’Neill LAJ (2014) Circadian clock proteins and immunity. Immunity 40:178–186

    Article  CAS  PubMed  Google Scholar 

  • Dai DF, ChiaoYA Marcinek DJ, Szeto HH, Rabinovitch PS (2014) Mitochondrial oxidative stress in aging and healthspan. Longev Healthspan 3:6

    Article  PubMed  PubMed Central  Google Scholar 

  • Dibner C, Schibler U (2015) Circadian timing of metabolism in animal models and humans. J Intern Med 277:513–527

    Article  CAS  PubMed  Google Scholar 

  • du Plessis SS, Hagenaar K, Lampiao F (2010) The in vitro effects of melatonin on human sperm function and its scavenging activities on NO and ROS. Andrologia 42:112–116

    Article  PubMed  Google Scholar 

  • El Assar M, Angulo J, Vallejo S, Peiró C, Sánchez-Ferrer CF, Rodríguez-Mañas L (2012) Mechanisms involved in the aging-induced vascular dysfunction. Front Physiol 3:132

    Article  PubMed  PubMed Central  Google Scholar 

  • Erion R, King AN, Wu G, Hogenesch JB, Sehgal A (2016) Neural clocks and Neuropeptide F/Y regulate circadian gene expression in a peripheral metabolic tissue. eLife 5:e13552

    Article  PubMed  PubMed Central  Google Scholar 

  • Farajnia S, Michel S, Deboer T, vanderLeest HT, Houben T, Rohling JH, Ramkisoensing A, Yasenkov R, Meijer JH (2012) Evidence for neuronal desynchrony in the aged suprachiasmatic nucleus clock. J Neurosci 32:5891–5899

    Article  CAS  PubMed  Google Scholar 

  • Gill S, Le HD, Melkani GC, Panda S (2015) Time-restricted feeding attenuates age-related cardiac decline in Drosophila. Science 234:1265–1269

    Article  Google Scholar 

  • Gubin DG, Gubin GD, Gapon L, Weinert D (2016) Daily melatonin administration attenuates age-dependent disturbances of cardiovascular rhythms. Curr Aging Sci 9:5–13

    Article  CAS  PubMed  Google Scholar 

  • Hadden H, Soldin SJ, Massaro D (2012) Circadian disruption alters mouse lung clock gene expression and lung mechanics. J Appl Physiol 113:385–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamelin-Morrissette J, Cloutier S, Girouard J, Belgorosky D, Eiján AM, Legault J, Reyes-Moreno C, Bérubé G (2015) Identification of an anti-inflammatory derivative with anti-cancer potential: the impact of each of its structural components on inflammatory responses in macrophages and bladder cancer cells. Eur J Med Chem 96:259–268

    Article  CAS  PubMed  Google Scholar 

  • Hardeland R, Madrid JA, Tan DX, Reiter RJ (2012) Melatonin, the circadian multioscillator system and health: the need for detailed analyses of peripheral melatonin signalling. J Pineal Res 52:139–166

    Article  CAS  PubMed  Google Scholar 

  • Hoogerwerf WA, Shahinian VB, Cornélissen G, Halberg F, Bostwick J, Timm J, Bartell PA, Cassone VM (2010) Rhythmic changes in colonic motility are regulated by period genes. Am J Physiol Gastrointest Liver Physiol 298:143–150

    Article  Google Scholar 

  • Jagota A (2012) Age induced alterations in biological clock: therapeutic effects of melatonin. In: Thakur MK, Rattan SI (eds) Brain aging and therapeutic interventions. Springer Netherlands publishing group, London, pp 111–129

    Chapter  Google Scholar 

  • Jagota A, Reddy MY (2007) The effect of Curcumin on ethanol induced changes in Suprachiasmatic nucleus (SCN) and Pineal. Cell Mol Neurobiol 27:997–1006

    Article  CAS  PubMed  Google Scholar 

  • Jagota A, Kalyani D (2008) Daily serotonin rhythms in rat brain during postnatal development and aging. Biogerontology 9:229–234

    Article  CAS  PubMed  Google Scholar 

  • Jagota A, Kalyani D (2010) Effect of melatonin on age induced changes in daily serotonin rhythms in suprachiasmatic nucleus of male Wistar rat. Biogerontology 11:299–308

    Article  CAS  PubMed  Google Scholar 

  • Jenwitheesuk A, Nopparat C, Mukda S, Wongchitrat P, Govitrapong P (2014) Melatonin regulates aging and neurodegeneration through energy metabolism, epigenetics, autophagy and circadian rhythm pathways. Int J Mol Sci 15:16848–16884

    Article  PubMed  PubMed Central  Google Scholar 

  • Karasek M (2004) Melatonin, human aging and age related diseases. Exp Gerontol 39:1723–1729

    Article  CAS  PubMed  Google Scholar 

  • Kireev RA, Cuesta S, Ibarrola C, Bela T, Moreno Gonzalez E, Vara E, Tresguerres JA (2012) Age-related differences in hepatic ischemia/reperfusion: gene activation, liver injury, and protective effect of melatonin. J Surg Res 178:922–934

    Article  CAS  PubMed  Google Scholar 

  • Kirkwood TB (2005) Time of our lives. What controls the length of life? EMBO Rep 6:S4–S8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovacic JC, Moreno P, Hachinski V, Nabel EG, Fuster V (2011) Cellular senescence, vascular disease, and aging: part 1 of a 2-part review. Circulation 123:1650–1660

    Article  PubMed  Google Scholar 

  • Kumar JP, Challet E, Kalsbeek A (2015) Circadian rhythms in glucose and lipid metabolism in nocturnal and diurnal mammals. Mol Cell Endocrinol 1:74–88

    Article  Google Scholar 

  • Kunieda T, Minamino T, Miura K, Katsuno T, Tateno K, Miyauchi H, Kaneko S, Bradfield CA, FitzGerald GA, Komuro I (2008) Reduced nitric oxide causes age-associated impairment of circadian rhythmicity. Circ Res 102:607–614

    Article  CAS  PubMed  Google Scholar 

  • Lee NP, Cheng CY (2008) Nitric oxide and cyclic nucleotides: their roles in junction dynamics and spermatogenesis. Adv Exp Med Biol 636:172–185

    Article  CAS  PubMed  Google Scholar 

  • Levashov M, Chaka EG, Yanko RV, Zamorska TM (2015) Effect of melatonin on age-related dynamics of the reactive properties of bone tissue. Ross Fiziol Zh Im I M Sechenova 101:1181–1190

    CAS  PubMed  Google Scholar 

  • Logan RW, Zhang C, Murugan S, O’Connell S, Levitt D, Rosenwasser AM, Sarkar DK (2012) Chronic shift-lag alters the circadian clock of natural killer cells and promotes lung cancer growth in rats. J Immunol 188:2583–2591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu WZ, Gwee KA, Moochalla S, Ho KY (2005) Melatonin improves bowel symptoms in female patients with irritable bowel syndrome: a double-blind placebo-controlled study. Aliment Pharmacol Ther 22:927–934

    Article  CAS  PubMed  Google Scholar 

  • Manikonda PK, Jagota A (2012) Melatonin administration differentially affects age-induced alterations in daily rhythms of lipid peroxidation and antioxidant enzymes in male rat liver. Biogerontology 13:511–524

    Article  CAS  PubMed  Google Scholar 

  • Mattam U, Jagota A (2014) Differential role of melatonin in restoration of age-induced alterations in daily rhythms of expression of various clock genes in suprachiasmatic nucleus of male Wistar rats. Biogerontology 3:257–268

    Article  Google Scholar 

  • Mitome M, Shirakawa T, Oshima S, Nakamura W, Oguchi H (2001) Circadian rhythm of nitric oxide production in the dorsal region of the suprachiasmatic nucleus in rats. Neurosci Lett 303:161–164

    Article  CAS  PubMed  Google Scholar 

  • Montesanto A, Crocco P, Tallaro F, Pisani F, Mazzei B, Mari V, Corsonello A, Lattanzio F, Passarino G, Rose G (2013) Common polymorphisms in nitric oxide synthase (NOS) genes influence quality of aging and longevity in humans. Biogerontology 14:177–186

    Article  CAS  PubMed  Google Scholar 

  • Mukda S, Panmanee J, Boontem P, Govitrapong P (2016) Melatonin administration reverses the alteration of amyloid precursor protein-cleaving secretases expression in aged mouse hippocampus. Neurosci Lett 621:39–46

    Article  CAS  PubMed  Google Scholar 

  • Nakamura JT, Nakamura W, Yamazaki S, Kudo T, Cutler T, Colwell CS, Block GD (2011) Age-related decline in circadian output. J Neurosci 31:10201–10205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nduhirabandi F, Huisamen B, Strijdom H, Blackhurst D, Lochner A (2014) Short-term melatonin protects the heart of obese rats independent of body weight change and visceral adiposity. J Pineal Res 57:317–332

    Article  CAS  PubMed  Google Scholar 

  • Novella S, Dantas AP, Segarra G, Vidal-Gomez X, Mompeon A, Garabito M, Heremenegildo C, Medina P (2013) Aging-related endothelial dysfunction in the aorta from female senescence-accelerated mice is associated with decreased nitric oxide synthase expression. Exp Gerontol 48:1329–1337

    Article  CAS  PubMed  Google Scholar 

  • Peek CB, Ramsey KM, Levine DC, Marcheva B, Perelis M, Bass J (2015) Circadian regulation of cellular physiology. Methods Enzymol 552:165–184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Predonzani A, Calì B, Agnellini AHR, Molon B (2015) Spotlights on immunological effects of reactive nitrogen species: when inflammation says nitric oxide. World J Exp Med 5:64–76

    Article  PubMed  PubMed Central  Google Scholar 

  • Reckelhoff JF, Kellum JA, Blanchard EJ, Bacon EE, Wesley AJ, Kruckeberg WC (1994) Changes in nitric oxide precursor, l-arginine, and metabolites, nitrate and nitrite, with aging. Life Sci 55:1895–1902

    Article  CAS  PubMed  Google Scholar 

  • Reddy VDK, Jagota A (2014) Effect of restricted feeding on nocturnality and daily leptin rhythms in OVLT in aged male Wistar rats. Biogerontology 3:245–256

    Article  Google Scholar 

  • Reddy MY, Jagota A (2015) Melatonin has differential effects on age-induced stoichiometric changes in daily chronomics of serotonin metabolism in SCN of male Wistar rats. Biogerontology 16:285–302

    Article  CAS  PubMed  Google Scholar 

  • Reiter RJ, Tan DX, Galano A (2014a) Melatonin: exceeding expectations. Physiology 5:325–333

    Article  Google Scholar 

  • Reiter RJ, Tan DX, Galano A (2014b) Melatonin reduces lipid peroxidation and membrane viscosity. Front Physiol 5:377

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodella LF, Favero G, Rossini C, Foglio E, Bonomini F, Reiter RJ, Rezzani R (2013) Aging and vascular dysfunction: beneficial melatonin effects. Age 35:103–115

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez DA, Abreu-Gonzalez P, Reiter RJ (2012) Melatonin and cardiovascular disease: myth or reality? Rev Esp Cardiol 65:215–218

    Article  Google Scholar 

  • Sanchez-Hidalgo M, de la Lastra CA, Carrascosa-Salmoral MP, Naranjo MC, Gomez-Corvera A, Caballero B, Guerrero JM (2009) Age-related changes in melatonin synthesis in rat extrapineal tissues. Exp Gerontol 44:328–334

    Article  CAS  PubMed  Google Scholar 

  • Seay DJ, Thummel CS (2011) The circadian clock, light, and cryptochrome regulate feeding and metabolism in drosophila. J Biol Rhythms 26:497–506

    Article  PubMed  PubMed Central  Google Scholar 

  • Semercioz A, Onur R, Ogras S, Orhan I (2003) Effects of melatonin on testicular tissue nitric oxide level and antioxidant enzyme activities in experimentally induced left varicocele. Neuro Endocrinol Lett 24:86–90

    CAS  PubMed  Google Scholar 

  • Shiva S (2013) Nitrite: a physiological store of nitric oxide and modulator of mitochondrial function. Redox Biol 1:40–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sindler AL, Devan AE, Fleenor BS, Seals DR (2014) Inorganic nitrite supplementation for healthy arterial aging. J Appl Physiol 116:463–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taddei S, Virdis A, Ghiadoni L, Salvetti G, Bernini G, Magagna A, Salvetti A (2001) Age-related reduction of NO availability and oxidative stress in humans. Hypertension 38:274–279

    Article  CAS  PubMed  Google Scholar 

  • Tan D, Zanghi BM, Manchester LC, Reiter RJ (2014) Melatonin identified in meats and other food stuffs: potentially nutritional impact. J Pineal Res 57:213–218

    Article  CAS  PubMed  Google Scholar 

  • Tomás-Zapico C, Coto-Montes A (2007) Melatonin as antioxidant under pathological processes. Recent Patents Endocrine Metabol Immune Drug Disc 1:63–82

    Article  Google Scholar 

  • Tsang AH, Barclay JL, Oster H (2013) Interactions between endocrine and circadian systems. J Mol Endocrinol 52:1–16

    Article  Google Scholar 

  • Voigt RM, Summa KC, Forsyth CB, Green SJ, Engen P, Naqib A, Vitaterna MH, Turek FW, Keshavarzian A (2016) The circadian clock mutation promotes intestinal dysbiosis. Alcohol Clin Exp Res 40:335–347

    Article  CAS  PubMed  Google Scholar 

  • von Gall C, Weaver DR (2008) Loss of responsiveness to melatonin in the aging mouse suprachiasmatic nucleus. Neurobiol Aging 29:464–470

    Article  CAS  PubMed  Google Scholar 

  • Vriend J, Reiter RJ (2015) Melatonin feedback on clock genes: a theory involving the proteasome. J Pineal Res 58:1–11

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Keenan DM, Pincus SM, Liu PY, Veldhuis JD (2011) Oscillations in joint synchrony of reproductive hormones in healthy men. Am J Physiol Endocrinol Metab 301:1163–1173

    Article  Google Scholar 

  • Xu K, DiAngelo JR, Hughes ME, Hogenesch JB, Sehgal A (2011) The circadian clock interacts with metabolic physiology to influence reproductive fitness. Cell Metab 13:639–654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zand J, Lanza F, Garg HK, Bryan NS (2011) All-natural nitrite and nitrate containing dietary supplement promotes nitric oxide production and reduces triglycerides in humans. Nutr Res 31:262–269

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Vanhoutte PM, Leung SW (2015) Vascular nitric oxide: beyond eNOS. J Pharmacol Sci 129:83–94

    Article  CAS  PubMed  Google Scholar 

  • Zhou D, Wang Y, Chen L, Jia L, Yuan J, Sun M, Zhang W, Wang P, Zuo J, Xu Z, Luan J (2016) Evolving roles of circadian rhythms in liver homeostasis and pathology. Oncotarget. doi:10.18632/oncotarget.7065

    Google Scholar 

Download references

Acknowledgments

The work is supported by ICMR (Ref. No. BMS/NTF/14/2006-2007; 55/7/2012-/BMS), UGC (Ref: F. No.: 32-613/2006 (SR) and UPE grants to AJ. Ch Vinod is thankful to UGC for fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Jagota.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinod, C., Jagota, A. Daily NO rhythms in peripheral clocks in aging male Wistar rats: protective effects of exogenous melatonin. Biogerontology 17, 859–871 (2016). https://doi.org/10.1007/s10522-016-9656-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10522-016-9656-6

Keywords

Navigation