Biogerontology

, Volume 17, Issue 4, pp 771–782 | Cite as

Ageing with elegans: a research proposal to map healthspan pathways

  • Walter Luyten
  • Peter Antal
  • Bart P. Braeckman
  • Jake Bundy
  • Francesca Cirulli
  • Christopher Fang-Yen
  • Georg Fuellen
  • Armand Leroi
  • Qingfei Liu
  • Patricia Martorell
  • Andres Metspalu
  • Markus Perola
  • Michael Ristow
  • Nadine Saul
  • Liliane Schoofs
  • Karsten Siems
  • Liesbet Temmerman
  • Tina Smets
  • Alicja Wolk
  • Suresh I. S. Rattan
Opinion Article

Abstract

Human longevity continues to increase world-wide, often accompanied by decreasing birth rates. As a larger fraction of the population thus gets older, the number of people suffering from disease or disability increases dramatically, presenting a major societal challenge. Healthy ageing has therefore been selected by EU policy makers as an important priority (http://www.healthyageing.eu/european-policies-and-initiatives); it benefits not only the elderly but also their direct environment and broader society, as well as the economy. The theme of healthy ageing figures prominently in the Horizon 2020 programme (https://ec.europa.eu/programmes/horizon2020/en/h2020-section/health-demographic-change-and-wellbeing), which has launched several research and innovation actions (RIA), like “Understanding health, ageing and disease: determinants, risk factors and pathways” in the work programme on “Personalising healthcare” (https://ec.europa.eu/research/participants/portal/desktop/en/opportunities/h2020/topics/693-phc-01-2014.html). Here we present our research proposal entitled “ageing with elegans” (AwE) (http://www.h2020awe.eu/), funded by this RIA, which aims for better understanding of the factors causing health and disease in ageing, and to develop evidence-based prevention, diagnostic, therapeutic and other strategies. The aim of this article, authored by the principal investigators of the 17 collaborating teams, is to describe briefly the rationale, aims, strategies and work packages of AwE for the purposes of sharing our ideas and plans with the biogerontological community in order to invite scientific feedback, suggestions, and criticism.

Keywords

Healthspan Longevity Nutraceuticals Medicinal plants Natural products Caenorhabditis elegans 

Notes

Acknowledgments

We would like to thank Dr. Iesel Van der Plancken, Dr. Daniel Ramón, and Dr. Steven Van Vooren for critical comments on the AwE proposal, and Dr. Geert Depuydt and Brecht Wouters (KU Leuven) for help with finalising the manuscript. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under Grant agreement No 633589. This publication reflects only the authors’ views and the Commission is not responsible for any use that may be made of the information it contains.

References

  1. Andersen SL, Sebastiani P, Dworkis DA, Feldman L, Perls TT (2012) Health span approximates life span among many supercentenarians: compression of morbidity at the approximate limit of life span. J Gerontol A Biol Sci Med Sci 67:395–405CrossRefPubMedGoogle Scholar
  2. Anselmi CV, Malovini A, Roncarati R, Novelli V, Villa F, Condorelli G, Bellazzi R, Puca AA (2009) Association of the FOXO3A locus with extreme longevity in a southern Italian centenarian study. Rejuvenation Res 12:95–104CrossRefPubMedGoogle Scholar
  3. Arany Ádám, Bolgár Bence, Balogh Balázs, Antal Peter, Mátyus Péter (2013) Multi-aspect candidates for repositioning: data fusion methods using heterogeneous information sources. Curr Med Chem 20(1):95–107CrossRefPubMedGoogle Scholar
  4. Avanesian A, Khodayari B, Felgner JS, Jafari M (2010) Lamotrigine extends lifespan but compromises health span in Drosophila melanogaster. Biogerontology 11:45–52CrossRefPubMedGoogle Scholar
  5. Bansal A, Zhu LJ, Yen K, Tissenbaum HA (2015) Uncoupling lifespan and healthspan in Caenorhabditis elegans longevity mutants. Proc Natl Acad Sci USA 12(3):E277–E286CrossRefGoogle Scholar
  6. Baron M, Asnis L, Gruen R (1981) The schedule for schizotypal personalities (SSP): a diagnostic interview for schizotypal features. Psychiatr Res 4:213–228CrossRefGoogle Scholar
  7. Bartke A (2008) impact of reduced insulin-like growth factor-1/insulin signalling on aging in mammals: novel findings. Aging Cell 7:285–290CrossRefPubMedGoogle Scholar
  8. Bitto, A., A. M. Wang, C. F. Bennett and M. Kaeberlein (2015) Biochemical genetic pathways that modulate aging in multiple species. Cold Spring Harb Perspect Med 5: a025114Google Scholar
  9. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94PubMedPubMedCentralGoogle Scholar
  10. Brooks-Wilson AR (2013) Genetics of healthy aging and longevity. Hum Genet 132:1238–1323CrossRefGoogle Scholar
  11. Cabreiro F, Au C, Leung K-Y, Vergara-Irigaray N, Cochemé HM, Noori T, Gems D (2013) Metformin retards aging in C. elegans by altering microbial folate and methionine metabolism. Cell 153(1):228–239CrossRefPubMedPubMedCentralGoogle Scholar
  12. Churgin MA, Fang-Yen C (2015) An imaging system for C. elegans behavior. Methods Mol Biol 1327:199–207CrossRefPubMedGoogle Scholar
  13. Churgin MA, Jung S, Yu CC, Chen X, Raizen DM, Fang-Yen C (2016) High-throughput longitudinal imaging of healthspan and longevity in Caenorhabditis elegans (unpublished manuscript)Google Scholar
  14. De Haes W, Frooninckx L, Van Assche R, Smolders A, Depuydt G, Billen J, Temmerman L (2014) Metformin promotes lifespan through mitohormesis via the peroxiredoxin PRDX-2. Proc Natl Acad Sci USA 111(24):E2501–E2509CrossRefPubMedPubMedCentralGoogle Scholar
  15. Engberg H, Christensen K, Andersen-Ranberg K, Vaupel JW, Jeune B (2008) Improving activities of daily living in Danish centenarians–but only in women: a comparative study of two birth cohorts born in 1895 and 1905. J Gerontol A Biol Sci Med Sci 63:1186–1192CrossRefPubMedPubMedCentralGoogle Scholar
  16. Ernst M, Abu Dawud R, Kurtz A, Schotta G, Taher L, Fuellen G (2015) Comparative computational analysis of pluripotency in human and mouse stem cells. Sci Rep 5:7927CrossRefPubMedPubMedCentralGoogle Scholar
  17. Finkel T (2005) Radical medicine: treating ageing to cure disease. Nat Rev Mol Cell Biol 6:971–976CrossRefPubMedGoogle Scholar
  18. Friedman DB, Johnson TE (1988) A mutation in the age-1 gene in Caenorhabditis elegans lengthens life and reduces hermaphrodite fertility. Genetics 118:75–86PubMedPubMedCentralGoogle Scholar
  19. Fuellen G, Schofield P, Flatt T, Schulz R-J, Boege F, Kraft K, Simm A (2015) Living long and well: prospects for a personalized approach to the medicine of ageing. GerontologyGoogle Scholar
  20. Fulop T, Larbi A, Witkowski JM, McElhaney J, Loeb M, Mitnitski A, Pawelec G (2010) Aging, frailty and age-related diseases. Biogerontology 11:547–563CrossRefPubMedGoogle Scholar
  21. Garcia-Valles R, Gomez-Cabrera MC, Rodriguez-Manas L, Garcia-Garcia FJ, Diaz A, Noguera I, Olaso-Gonzalez G, Vina J (2013) Life-long spontaneous exercise does not prolong lifespan but improves health span in mice. Longev Healthspan 2:14CrossRefPubMedPubMedCentralGoogle Scholar
  22. Glueck CJ, Gartside P, Fallat RW, Sielski J, Steiner PM (1976) Longevity syndromes: familial hypobeta and familial hyperalpha lipoproteinemia. J Lab Clin Med 88:941–957PubMedGoogle Scholar
  23. Guha S, Cao M, Kane RM, Savino AM, Zou S, Dong Y (2013) The longevity effect of cranberry extract in Caenorhabditis elegans is modulated by daf-16 and osr-1. Age (Dordr) 35:1559–1574CrossRefGoogle Scholar
  24. Hansen M, Taubert S, Crawford D, Libina N, Lee S-J, Kenyon C (2007) Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell 6:95–110CrossRefPubMedGoogle Scholar
  25. Hayden EC (2015) Ageing pushed as treatable condition—regulators asked to consider innovative trial design. Nature 522:265–266CrossRefGoogle Scholar
  26. Herndon LA, Schmeissner PJ, Dudaronek JM, Brown PA, Listner KM, Sakano Y, Paupard MC, Hall DH, Driscoll M (2002) Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans. Nature 419:808–814CrossRefPubMedGoogle Scholar
  27. Hubbard RE, Woodhouse KW (2010) Frailty, inflammation and the elderly. Biogerontology 11:635–641CrossRefPubMedGoogle Scholar
  28. Huber M, Knottnerus JA, Green L, van der Horst H, Jadad AR, Kromhout D, Leonard B, Lorig K, Loureiro MI, van der Meer JW, Schnabel P, Smith R, van Weel C, Smid H (2011) How should we define health? BMJ 343:d4163CrossRefPubMedGoogle Scholar
  29. Juhasz Gabriella, Hullam Gabor, Eszlaria Nora, Gonda Xenia, Antal Peter, Anderson Ian Muir, Hökfeltf Tomas G M, William Deakin JF, Bagdy Gyorgy (2014) Brain galanin system genes interact with life stresses in depression-related phenotypes. Proc Natl Acad Sci 111(16):E1666–E1673CrossRefPubMedPubMedCentralGoogle Scholar
  30. Keith SA, Amrit FR, Ratnappan R, Ghazi A (2014) The C. elegans healthspan and stress-resistance assay toolkit. Methods 68:476–486CrossRefPubMedGoogle Scholar
  31. Kenyon CJ (2010) The genetics of ageing. Nature 464:504–512CrossRefPubMedGoogle Scholar
  32. Kenyon C, Chang J, Gensch E, Rudner A, Tabtlang R (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366:461–464CrossRefPubMedGoogle Scholar
  33. Lapierre LR, Hansen M (2012) Lessons from C. elegans: signaling pathways for longevity. Trends Endocrinol Metab 23:637–644CrossRefPubMedPubMedCentralGoogle Scholar
  34. Leitsalu L, Haller T, Esko T, Tammesoo ML, Alavere H, Snieder H, Perola M, Ng PC, Mägi R, Milani L, Fischer K, Metspalu A (2015) Cohort profile: estonian biobank of the estonian genome center, University of Tartu. Int J Epidemiol 44(4):1137–1147CrossRefPubMedGoogle Scholar
  35. Meléndez A, Tallóczy Z, Seaman M, Eskelinen E-L, Hall DH, Levine B (2003) Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301:1387–1391CrossRefPubMedGoogle Scholar
  36. Mitnitski A, Song X, Rockwood K (2013) Assessing biological aging: the origin of deficit accumulation. Biogerontology 14:709–717CrossRefPubMedPubMedCentralGoogle Scholar
  37. Montesanto A, Lagani V, Martino C, Dato S, De Rango F, Berardelli M, Corsonello A, Mazzei B, Mari V, Lattanzio F, Conforti D, Passarino G (2010) A novel, population-specific approach to define frailty. Age 32:385–395CrossRefPubMedPubMedCentralGoogle Scholar
  38. Rattan SIS (2013) Healthy ageing, but what is health? Biogerontology 14:673–677CrossRefPubMedGoogle Scholar
  39. Seals DR, Melov S (2014) Translational geroscience: emphasizing function to achieve optimal longevity. Aging (Albany NY) 6:718–730CrossRefGoogle Scholar
  40. Seals DR, Justice JN, LaRocca TJ (2015) Physiological geroscience: targeting function to increase healthspan and achieve optimal longevity. J Physiol (Lond.) 11:1–24Google Scholar
  41. Shadyab AH, LaCroix AZ (2015) Genetic factors associated with longevity: a review of recent findings. Ageing Res Rev 19:1–7CrossRefPubMedGoogle Scholar
  42. Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, Hergueta T, Baker R, Dunbar GC (1998) The mini-international neuropsychiatric interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatr 59(Suppl 20):22–33; quiz 34–57Google Scholar
  43. Stevenson M, Bae H, Schupf N, Andersen S, Zhang Q, Perls T, Sebastiani P (2015) Burden of disease variants in participants of the long life family study. Aging (Albany NY) 7:123–132CrossRefGoogle Scholar
  44. Stroustrup N, Ulmschneider BE, Nash ZM, López-Moyado IF, Apfeld J (2013) The Caenorhabditis elegans lifespan machine. Nat methods 10(7):665–670CrossRefPubMedPubMedCentralGoogle Scholar
  45. Suda H (2014) Biophysical and biological meanings of healthspan from C. elegans cohort. Biochem Biophys Res Commun 452:36–41CrossRefPubMedGoogle Scholar
  46. Warsow G, Greber B, Falk SSI, Harder C, Siatkowski M, Schordan S, Fuellen G (2010) ExprEssence–revealing the essence of differential experimental data in the context of an interaction/regulation net-work. BMC Syst Biol 4(1):164CrossRefPubMedPubMedCentralGoogle Scholar
  47. Willcox BJ, Donlon TA, He Q, Chen R, Grove JS, Yano K, Masaki KH, Willcox DC, Rodriguez B, Curb JD (2008) FOXO3A genotype is strongly associated with human longevity. Proc Natl Acad Sci USA 105:1398CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Walter Luyten
    • 1
  • Peter Antal
    • 2
  • Bart P. Braeckman
    • 3
  • Jake Bundy
    • 4
  • Francesca Cirulli
    • 5
  • Christopher Fang-Yen
    • 6
  • Georg Fuellen
    • 7
  • Armand Leroi
    • 8
  • Qingfei Liu
    • 9
  • Patricia Martorell
    • 10
  • Andres Metspalu
    • 11
  • Markus Perola
    • 12
    • 13
    • 14
  • Michael Ristow
    • 15
  • Nadine Saul
    • 16
  • Liliane Schoofs
    • 17
  • Karsten Siems
    • 18
  • Liesbet Temmerman
    • 19
  • Tina Smets
    • 20
  • Alicja Wolk
    • 21
  • Suresh I. S. Rattan
    • 22
  1. 1.Department of Pharmaceutical and Pharmacological SciencesKU LeuvenLeuvenBelgium
  2. 2.Department of Measurement and Information SystemsBudapest University of Technology and EconomicsBudapestHungary
  3. 3.Biology DepartmentGhent UniversityGhentBelgium
  4. 4.Department of Surgery and CancerImperial College LondonLondonUK
  5. 5.Section of Behavioral Neuroscience, Department of Cell Biology and NeurosciencesIstituto Superiore di SanitàRomeItaly
  6. 6.Department of Bioengineering, School of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaUSA
  7. 7.Institute for Biostatistics and Informatics in Medicine and Ageing ResearchRostock University Medical CenterRostockGermany
  8. 8.Department of Life SciencesImperial College LondonLondonUK
  9. 9.Tsinghua UniversityBeijingChina
  10. 10.Cell Biology Laboratory, Food Biotechnology DepartmentBiópolis SLValenciaSpain
  11. 11.Estonian Genome Center & Institute of Molecular and Cell BiologyUniversity of TartuTartuEstonia
  12. 12.Department of HealthNational Institute for Health and WelfareHelsinkiFinland
  13. 13.Institute for Molecular Medicine FinlandUniversity of HelsinkiHelsinkiFinland
  14. 14.The Estonian Genome CenterUniversity of TartuTartuEstonia
  15. 15.Energy Metabolism LaboratorySwiss Federal Institute of Technology (ETH) ZürichSchwerzenbachSwitzerland
  16. 16.Molecular Genetics Group, Faculty of Life Sciences, Institute of BiologyHumboldt-Universität zu BerlinBerlinGermany
  17. 17.Laboratory of Genomics and Proteomics, Department of BiologyKU LeuvenLeuvenBelgium
  18. 18.Analyticon Discovery GmbHPotsdamGermany
  19. 19.Laboratory of Molecular and Functional Neurobiology, Department of BiologyKU LeuvenLeuvenBelgium
  20. 20.CartageniaPart of Agilent Technologies, Inc.LouvainBelgium
  21. 21.Division of Nutritional Epidemiology, Institute of Environmental MedicineKarolinska InstitutetStockholmSweden
  22. 22.Laboratory of Cellular Ageing, Department of Molecular Biology and GeneticsAarhus UniversityAarhus-CDenmark

Personalised recommendations