Life-time protection against severe heat stress by exposing young Drosophila melanogaster flies to a mild cold stress

Abstract

Previous studies in the laboratory of the author have shown that subjecting flies to a mild stress (e.g. a cold stress) during the first 2 weeks of adult life can increase lifespan and resistance to severe stresses (e.g. heat and fungal infection) at 6 weeks of age (ca the mean lifespan at 25 °C). This result could either show that a mild stress protects flies against severe stress for the entire life or for a duration of 4 weeks. To clarify the issue, young flies living at 25 °C were pretreated with a cold stress and thereafter transferred at 19 or 22 °C, which increases lifespan. The mild cold stress protected these flies from heat at ages when flies kept at 25 °C are dead, i.e. at 10 weeks of age or 8 weeks after the end of cold stress. Thus, a mild stress protects flies for life, even if the duration of life is increased. Because temperature can strongly vary from day to day in the wild, and lifespan of flies too, it would be a selective advantage if the ability to survive a strong stress after having been subjected to a mild stress would be maintained not only for a few days but for life, whatever its duration could be. If flies would be subjected to a mild stress when living at 25 °C, a temperature change from e.g. 25 to 22 °C would increase their lifespan and they could survive a strong stress at an age when flies kept at 25 °C are dead.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Chen HY, Maklakov AA (2012) Longer life span evolves under high rates of condition-dependent mortality. Curr Biol 22:2140–2143

    CAS  Article  PubMed  Google Scholar 

  2. David JR (1988) Temperature. In: Lints FA, Soliman MH (eds) Drosophila as a model organism for ageing studies. Blackie, Glasgow, pp 33–45

    Google Scholar 

  3. David J, Clavel MF (1969) Influence de la température sur le nombre, le pourcentage d’éclosion et la taille des œufs pondus par Drosophila melanogaster (Effect of temperature on number, hatching percentage, and size of laid eggs in Drosophila melanogaster). Ann Soc Ent Fr 5:161–177

    Google Scholar 

  4. Frolkis VV (1982) Aging and life-prolonging processes. Springer, Heidelberg

    Google Scholar 

  5. Khazaeli AA, Curtsinger JW (2013) Pleiotropy and life history evolution in Drosophila melanogaster: uncoupling life span and early fecundity. J Gerontol A 68:546–553

    CAS  Article  Google Scholar 

  6. Kimber CM, Chippindale AK (2013) Mutation, condition, and the maintenance of extended lifespan in Drosophila. Curr Biol 23:2283–2287

    CAS  Article  PubMed  Google Scholar 

  7. Kirkwood TBL (2008) Understanding ageing from an evolutionary perspective. J Intern Med 263:117–127

    CAS  Article  PubMed  Google Scholar 

  8. Kjærsgaard A, Demontis D, Kristensen TN, Le N, Faurby S, Pertoldi C, Sørensen JG, Loeschcke V (2010) Locomotor activity of Drosophila melanogaster in high temperature environments: plastic and evolutionary responses. Clim Res 43:127–134

    Article  Google Scholar 

  9. Kristensen TN, Sørensen JG, Loeschcke V (2003) Mild heat stress at a young age in Drosophila melanogaster leads to increased Hsp70 synthesis after stress exposure later in life. J Genet 82:89–94

    CAS  Article  PubMed  Google Scholar 

  10. Laukkanen T, Khan H, Zaccardi F, Laukkanen JA (2015) Association between sauna bathing and fatal cardiovascular and all-cause mortality events. JAMA Intern Med 175:542–548

    Article  PubMed  Google Scholar 

  11. Lavitrano M, Smolenski RT, Musumeci A, Maccherini M, Slominska E, Di Florio E, Bracco A, Mancini A, Stassi G, Patti M, Giovannoni R, Froio A, Simeone F, Forni M, Bacci ML, D’Alise G, Cozzi E, Otterbein LE, Yacoub MH, Bach FH, F Calise (2004) Carbon monoxide improves cardiac energetics and safeguards the heart during reperfusion after cardiopulmonary bypass in pigs. FASEB J 18:1093–1095

    CAS  PubMed  Google Scholar 

  12. Le Bourg E (2007) Hormetic effects of repeated exposures to cold at young age on longevity. Biogerontology 8:431–444

    Article  PubMed  Google Scholar 

  13. Le Bourg E (2009) Hormesis, aging, and longevity. Biochim Biophys Acta 1790:1030–1039

    Article  PubMed  Google Scholar 

  14. Le Bourg E (2011) A cold stress applied at various ages can increase resistance to heat and fungal infection in aged Drosophila melanogaster flies. Biogerontology 12:185–193

    Article  PubMed  Google Scholar 

  15. Le Bourg E (2012) Combined effects of two mild stresses (cold and hypergravity) on longevity, behavioral aging, and resistance to severe stresses in Drosophila melanogaster. Biogerontology 13:313–328

    Article  PubMed  Google Scholar 

  16. Le Bourg E, Lints FA, Delincé J, Lints CV (1988) Reproductive fitness and longevity in Drosophila melanogaster. Exp Gerontol 23:491–500

    CAS  Article  PubMed  Google Scholar 

  17. Le Bourg E, Valenti P, Payre F (2002) Lack of hypergravity-associated longevity extension in Drosophila melanogaster flies overexpressing hsp70. Biogerontology 3:355–364

    Article  PubMed  Google Scholar 

  18. Le Bourg E, Malod K, Massou I (2012) The NF-κB-like factor DIF could explain some positive effects of a mild stress on longevity, behavioral aging, and resistance to strong stresses in Drosophila melanogaster. Biogerontology 13:455–465

    Google Scholar 

  19. Maklakov AA (2013) Aging: why do organisms live too long? Curr Biol 23:R1003–R1005

    CAS  Article  PubMed  Google Scholar 

  20. Maklakov AA (2015) Why organisms age: evolution of senescence under positive pleiotropy? BioEssays 37:802–807

    CAS  Article  PubMed  Google Scholar 

  21. Mattson MP, Calabrese EJ (eds) (2010) Hormesis. A revolution in biology, toxicology and medicine. Springer, Dordrecht

    Google Scholar 

  22. Medawar PB (1952) An unsolved problem in biology. HK Lewis, London

    Google Scholar 

  23. Miller MS, Lekkas P, Braddock JM, Farman GP, Ballif BA, Irving TC, Maughan DW, Vigoreaux JO (2008) Aging enhances indirect flight muscle fiber performance yet decreases flight ability in Drosophila. Biophys J 95:2391–2401

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Minois N, Le Bourg E (1999) Resistance to stress as a function of age in Drosophila melanogaster living in hypergravity. Mech Ageing Dev 109:53–64

    CAS  Article  PubMed  Google Scholar 

  25. Perrin S (2014) Preclinical research: make mouse studies work. Nature 507:423–425

    Article  PubMed  Google Scholar 

  26. Popper KR (1935) Logik der Forschung (the logic of scientific discovery). Verlag von Julius Springer, Vienna

    Google Scholar 

  27. Rattan SIS, Le Bourg E (eds) (2014) Hormesis in health and disease. CRC Press, Boca Raton

    Google Scholar 

  28. Reznick D, Bryant M, Holmes D (2006) The evolution of senescence and post-reproductive lifespan in guppies (Poecilia reticulata). PLoS Biol 4(1):e7

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sacher GA (1978) Evolution of longevity and survival characteristics in mammals. In: Schneider EL (ed) The genetics of aging. Plenum Press, New York, pp 151–168

    Google Scholar 

  30. Sarup P, Loeschcke V (2011) Life extension and the position of the hormetic zone depends on sex and genetic background in Drosophila melanogaster. Biogerontology 12:109117

    Article  Google Scholar 

  31. Sørensen JG, Kristensen TN, Kristensen KV, Loeschcke V (2007) Sex specific effects of heat induced hormesis in Hsf- deficient Drosophila melanogaster. Exp Gerontol 42:1123–1129

    Article  PubMed  Google Scholar 

  32. Vaiserman AM (2011) Hormesis and epigenetics: is there a link? Ageing Res Rev 10:413–421

    CAS  PubMed  Google Scholar 

  33. Vaiserman AM, Koshel NM, Litoshenko AY, Mozzhukhina TG, Voitenko VP (2003) Effect of X-irradiation in early ontogenesis on the longevity and amount of S1 nuclease- sensitive DNA sites in adult Drosophila melanogaster. Biogerontology 4:9–14

    CAS  Article  PubMed  Google Scholar 

  34. Williams GC (1957) Pleiotropy, natural selection and the evolution of senescence. Evolution 11:398–411

    Article  Google Scholar 

  35. Wit J, Sarup P, Lupsa N, Malte H, Frydenberg J, Loeschcke V (2013) Longevity for free? Increased reproduction with limited trade-offs in Drosophila melanogaster selected for increased life span. Exp Geront 48:349–357

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Éric Le Bourg.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Le Bourg, É. Life-time protection against severe heat stress by exposing young Drosophila melanogaster flies to a mild cold stress. Biogerontology 17, 409–415 (2016). https://doi.org/10.1007/s10522-015-9629-1

Download citation

Keywords

  • Drosophila melanogaster
  • Hormesis
  • Mild stress
  • Heat stress
  • Ageing