Abudugupur A, Mitsui K, Yokota S, Tsurugi K (2002) An ARL1 mutation affected autophagic cell death in yeast, causing a defect in central vacuole formation. Cell Death Differ 9:158–168. doi:10.1038/sj.cdd.4400942
CAS
PubMed
Article
Google Scholar
Armstrong J (2010) Yeast vacuoles: more than a model lysosome. Trends cell Biol 20:580–585. doi:10.1016/j.tcb.2010.06.010
CAS
PubMed
Article
Google Scholar
Bartels D, Hussain SS (2011) Resurrection plants: physiology and molecular biology ecological studies. In: Lüttge U, Beck E, Bartels D (eds) Desiccation tolerance in plants. Springer, Heidelberg, pp 339–364
Chapter
Google Scholar
Berkov SH, Nikolova MT, Hristozova NI, Momekov GZ, Ionkova II, Djilianov DL (2011) GC-MS profiling of bioactive extracts from Haberlea rhodopensis: an endemic resrrection plant. J Serb Chem Soc 76(2):211–220
CAS
Article
Google Scholar
Berthele H, Sella O, Lavarde M, Mielcarek C, Pense-Lheritier AM, Pirnay S (2014) Determination of the influence of factors (ethanol, pH and aw) on the preservation of cosmetics using experimental design. Int J Cosmet Sci 36:54–61. doi:10.1111/ics.12094
CAS
Article
Google Scholar
Breitenbach M, Michal Jazwinski S, Peter L (2012) Aging research in yeast. Springer, Heidelberg
Book
Google Scholar
Cassidy-Stone A et al (2008) Chemical inhibition of the mitochondrial division dynamin reveals its role in Bax/Bak-dependent mitochondrial outer membrane permeabilization. Dev Cell 14:193–204. doi:10.1016/j.devcel.2007.11.019
CAS
PubMed Central
PubMed
Article
Google Scholar
Corte-Real M, Madeo F (2013) Yeast programed cell death and aging. Front Oncol 3:283. doi:10.3389/fonc.2013.00283
PubMed Central
PubMed
Article
Google Scholar
Dell’Acqua G, Schweikert K (2012) Skin benefits of a myconoside-rich extract from resurrection plant Haberlea rhodopensis. Int J Cosmet Sci 34:132–139. doi:10.1111/j.1468-2494.2011.00692.x
PubMed
Article
Google Scholar
Djilianov D, Genova G, Parvanova D, Zapryanova N, Konstantinova T, Atanassov A (2005) In vitro culture of the resurrection plant Haberlea rhodopensis. Plant Cell, Tissue Organ Cult 80:115–118
CAS
Article
Google Scholar
Djilianov D et al (2011) Sugar ratios, glutathione redox status and phenols in the resurrection species Haberlea rhodopensis and the closely related non-resurrection species Chirita eberhardtii. Plant Biol 13:767–776. doi:10.1111/j.1438-8677.2010.00436.x
CAS
PubMed
Article
Google Scholar
Fabrizio P, Pletcher SD, Minois N, Vaupel JW, Longo VD (2004) Chronological aging-independent replicative life span regulation by Msn2/Msn4 and Sod2 in Saccharomyces cerevisiae. FEBS Lett 557:136–142
CAS
PubMed
Article
Google Scholar
Gechev TS et al (2013) Molecular mechanisms of desiccation tolerance in the resurrection glacial relic Haberlea rhodopensis. Cell Mol life Sci 70:689–709. doi:10.1007/s00018-012-1155-6
CAS
PubMed
Article
Google Scholar
Georgieva M, Roguev A, Balashev K, Zlatanova J, Miloshev G (2012a) Hho1p, the linker histone of Saccharomyces cerevisiae, is important for the proper chromatin organization in vivo. Biochim Biophys Acta 1819:366–374. doi:10.1016/j.bbagrm.2011.12.003
CAS
PubMed
Article
Google Scholar
Georgieva S, Popov B, Tanchev S, Deyana H (2012b) Haberlea rhodopensis (Friv.) reduces chromosomal aberrations in whole body irradiated rabbits. Int J Phytomed 4:395–398
Google Scholar
Georgieva S, Popov B, Bonev G (2013) Radioprotective effect of Haberlea rhodopensis (Friv.) leaf extract on gamma-radiation-induced DNA damage, lipid peroxidation and antioxidant levels in rabbit blood. Indian J Exp Biol 51:29–36
PubMed
Google Scholar
Gershon H, Gershon D (2000) The budding yeast, Saccharomyces cerevisiae, as a model for aging research: a critical review. Mech Ageing Dev 120:1–22. doi:10.1016/S0047-6374(00)00182-2
CAS
PubMed
Article
Google Scholar
Henderson KA, Hughes AL (2014) Mother-daughter asymmetry of pH underlies aging and rejuvenation in yeast. eLife 3:e03504. doi:10.7554/eLife.03504
PubMed
Article
Google Scholar
Hughes AL, Gottschling DE (2012) An early age increase in vacuolar pH limits mitochondrial function and lifespan in yeast. Nature 492:261–265. doi:10.1038/nature11654
CAS
PubMed Central
PubMed
Article
Google Scholar
Kondeva-Burdina M, Zheleva-Dimitrova D, Nedialkov P, Girreser U, Mitcheva M (2013) Cytoprotective and antioxidant effects of phenolic compounds from Haberlea rhodopensis Friv. (Gesneriaceae). Pharmacogn Mag 9:294–301. doi:10.4103/0973-1296.117822
CAS
PubMed Central
PubMed
Article
Google Scholar
Kuchitsu K, Oh-hama T, Tsuzuki M, Miyachi S (1987) Detection and characterization of acidic compartments (vacuoles) in Chlorella vulgaris 11 h cells by 31P-in vivo NMR spectroscopy and cytochemical techniques. Arch Microbiol 148:83–87. doi:10.1007/BF00425353
CAS
Article
Google Scholar
Leonov A, Titorenko VI (2013) A network of interorganellar communications underlies cellular aging. IUBMB life 65:665–674. doi:10.1002/iub.1183
CAS
PubMed
Article
Google Scholar
Li SC, Kane PM (2009) The yeast lysosome-like vacuole: Endpoint and crossroads. Biochim et Biophys Acta 1793:650–663. doi:10.1016/j.bbamcr.2008.08.003
CAS
Article
Google Scholar
Longo VD, Fabrizio P (2012) Chronological Aging in Saccharomyces cerevisiae. Sub-cellular Biochem 57:101–121. doi:10.1007/978-94-007-2561-4_5
CAS
Article
Google Scholar
Markovska Y, Kimenov G, Stefanov K, Popov S (1992) Lipid and sterol changes in leaves of Haberlea rhodopensi and Ramonda serbica at transition from biosis into anabiosis and vice versa caused by water stress. Phytochemistry 31:2309–2314. doi:10.1016/0031-9422(92)83270-9
Article
Google Scholar
Marques M, Mojzita D, Amorim MA, Almeida T, Hohmann S, Moradas-Ferreira P, Costa V (2006) The Pep4p vacuolar proteinase contributes to the turnover of oxidized proteins but PEP4 overexpression is not sufficient to increase chronological lifespan in Saccharomyces cerevisiae. Microbiology 152:3595–3605. doi:10.1099/mic.0.29040-0
CAS
PubMed
Article
Google Scholar
Mazzoni C, Mangiapelo E, Palermo V, Falcone C (2012) Hypothesis: is yeast a clock model to study the onset of humans aging phenotypes? Front Oncol 2:203. doi:10.3389/fonc.2012.00203
PubMed Central
PubMed
Article
Google Scholar
Mazzoni C, Giannattasio S, Winderickx J, Ludovico P (2013) Yeast stress, aging, and death. Oxid Med Cell Longev 2013:684395. doi:10.1155/2013/684395
PubMed Central
PubMed
Google Scholar
Moyankova D, Mladenov P, Berkov S, Peshev D, Georgieva D, Djilianov D (2014) Metabolic profiling of the resurrection plant Haberlea rhodopensis during desiccation and recovery. Physiol Plant 152(4):675–687. doi:10.1111/ppl.12212
CAS
PubMed
Article
Google Scholar
Müller J, Sprenger N, Bortlik K, Boller T, Wiemken A (1997) Desiccation increases sucrose levels in Ramonda and Haberlea, two genera of resurrection plants in the Gesneriaceae. Physiol Plant 100:153–158. doi:10.1111/j.1399-3054.1997.tb03466.x
Article
Google Scholar
Palermo V, Mattivi F, Silvestri R, La Regina G, Falcone C, Mazzoni C (2012) Apple can act as anti-aging on yeast cells. Oxid Med Cell Longev 2012:491759. doi:10.1155/2012/491759
PubMed Central
PubMed
Google Scholar
Pereira C, Bessa C, Saraiva L (2012) Endocytosis inhibition during H2O2-induced apoptosis in yeast. FEMS Yeast Res 12:755–760. doi:10.1111/j.1567-1364.2012.00825.x
CAS
PubMed
Article
Google Scholar
Russell AD (2003) Challenge testing: principles and practice. Int J Cosmet Sci 25:147–153. doi:10.1046/j.1467-2494.2003.00179.x
CAS
PubMed
Article
Google Scholar
Testa G, Biasi F, Poli G, Chiarpotto E (2014) Calorie restriction and dietary restriction mimetics: a strategy for improving healthy aging and longevity. Curr Pharm Des 20:2950–2977
CAS
PubMed
Article
Google Scholar
Uzunova K, Georgieva M, Miloshev G (2013) Saccharomyces cerevisiae linker histone-Hho1p maintains chromatin loop organization during ageing. Oxid Med Cell Longev 2013:437146. doi:10.1155/2013/437146
PubMed Central
PubMed
Google Scholar
Veleva R et al (2015) Changes in the functional characteristics of tumor and normal cells after treatment with extracts of white dead-nettle. Biotechnol Biotechnol Equip 29:181–188
PubMed Central
PubMed
Article
Google Scholar
Wach A, Brachat A, Rebischung C, Steiner S, Pokorni K, Heesen ST, Philippsen P (1998) 5 PCR-based gene targeting in Saccharomyces cerevisiae. In: Alistair JPB, Mick T (eds) Methods in microbiology. Academic Press, San Diego, pp 67–81
Google Scholar
Weisman LS, Bacallao R, Wickner W (1987) Multiple methods of visualizing the yeast vacuole permit evaluation of its morphology and inheritance during the cell cycle. J Cell Biol 105:1539–1547
CAS
PubMed
Article
Google Scholar